This dissertation has been microfilmed exactly as received 69-8936

MCREYNOLDS, Paul Robert, 1936-
THE CLAREMONT PROFILE METHOD AND THE GROUPING OF BYZANTINE NEW TESTAMENT MANUSCRIPTS.

Claremont Graduate School and University Center, Ph.D., 1969
Religion
University Microfilms, Inc., Ann Arbor, Michigan
(C) PAUL ROBERT MCREXNOLDS 1969

ALI RIGHTS RESERVED

TḢ̇ CLAREMONT PROFILE METHOD AND THE GROUPING OF BYZANTINE NEW TESTAMENT MANUSCRIPTS

By

Paul Robert McReynolds

A Dissertation presented to the General Faculty of the Claremont Graduate School in partial fulfillment of the requirements for the degree of Doctor of Philosophy

We, the undersigned, certify that we have read this dissercation and approve it as adequate in scope and quality for the degree of Doctor of Philosophy.

Date $\frac{(i+4 c i o t-29,146 \delta}{i)}$

PREFACE

The Claremont Profile Method was developed because of the need of the International Greek New Testament Project for a method of selecting representative manuscripts of all the known groups. The idea of defining a group in terms of the readings of several groups began in my work on the Kappa groups. In my attempt to differentiate the Kappa groups so manuscripts could be selected to represent each group, I found that the four Kappa groups had some common readings and each group agreed with another group at different points of variance. Mr. Fred Wisse applied this basic idea to all the groups of von Soden and the Claremont Profile Method was born. Mr. Wisse has recently completed a dissertation on the methodology involved in the Claremont Profile Method. The first section of this dissertation summarizes that methodology, and the second section demonstrates the use of the method as applied to known groups.

The development of the method owes much to the I.G.N.T.P. and to its Chairman of the American Committee, Dr. Ernest Cadman Colwell. The Project not only supplied a large amount of raw material but Dr. Colwell, Dr. Eldon J. Epp and Mr. Irving Alan Sparks contributed much with their interest, encouragement and assistance.

My special thanks are also extended to Dr. Eric L. Titus and Dr. Jane Dempsey Douglass who worked with Dr. Colwell as my dissertation committee. Their help in the improvement of the style of the paper is gratefully acknowledged. Thanks are also due to my wife for help in typing and preparing the paper in its final form.

TABLE OF CONTENTS

Page
PREFACE ii
LIST OF TABLES v
PART I. THE CLAREMONT PROFILE METHOD
Chapter
I. THE SELECTION OF READINGS 2
II. THE PROFILE CONCEPT 9
PART II. THE GROUPING OF BYZANTINE MANUSCRIPTS
III. GROUPS CONFIRMED BY THE CLAREMONT PROFILE METHOD 15
Introduction 15
Group 13 18
Group 1 22
Group 22 28
Group M^{a} 32
Group Mb 36
Group 1424 39
Group 43
Group 1216 47
Group Λ 50
Group Kr 53
Group $\pi^{a b}$ 62
Group Ω 75
Group K^{X} 81.
IV. GROUPS UNGONFIRMED BY THE CLAREMONT PROFILE METHOD 88
I^{a} 88
IO 89
I° 89
$I^{\varphi C}$ 90
Patmos Group 91
v. GENERAL CONCLUSIONS 92
BIBLIOGRAPHY 98
APPENDIXES
I. Test Readings for Luke 102
II. Chapter Group Profiles 110
III. Miscellaneous Profiles 111
IV. A List of Manuscripts and their Classifications 112

LIST OF TABLES

Table Page

1. Types of Variants 7
2. Group 13 20
3. Manuscript Profiles of Group 13 21
4. Group 1 26
5. Manuscript Profiles of Group 1 27
6. Group 22 30
7. Manuscript Profiles of Group 22 31
8. Group M^{a} in all Chapters 33
9. Group M^{a} in at least one Chapter 34
10. Manuscript Profiles of Group M^{a} 35
11. Group M^{b} 37
12. Manuscript Profiles of Group M^{b} 38
13. Manuscript Profiles of Group 1424 42
14. Agreements in Major Lectionary Readings in Luke 4 45
15. Manuscript Profiles of Group 7 46
16. Group 1216 48
17. Manuscript Profiles of Group 1216 49
18. Group Λ 51
19. Manuscript Profiles of Group Λ 52
20. Percentage of $K^{\text {r }}$ Agreement 55
21. Manuscript Profiles of Group K^{r} 59
22. Group π^{a} 65
23. Group $\mathrm{II}^{\text {b }}$ 66
24. Π I $a b$ mixed with K^{x} 67
25. Manuscript Profiles of Group $\Pi^{a b}$ 70
26. Manuscript Profiles of Group 78
27. Group K^{X} 84
28. Manuscript Profiles of Group K^{x} 85

PART I. THE CLAREMONT PROFILE METHOD

CHAPTER I, THE SELECTION OF READINGS

The presence of about 1700 minuscule manuscripts which have not been thoroughly examined and classified presents a problem for textual criticism. If the text critic proceeds critically, he must take into account all the evidence available to him. Before he can use all 1700 manuscripts, he must evaluate each manuscript in order to ascertain its value and place in the textual tradition. Each manuscript must be fully collated against a standard text. It is through a comparison of the collations of the manuscripts that the text critic can group manuscripts and evaluate their worth for the accomplishment of the two goals of textual criticism, i.e., the reconstruction of the original text and the writing of the history of the k fanuscripit tradition. But the task of fully collating and comparing that many manuscripts is staggering. The answer to the problem lies in sampling, but in the past some sampling methods have proved to be inaccurate or too limited.

The task of organizing these 1700 manuscripts into an intelligible and manageable apparatus is an additional problem. Von Soden attempted to solve this problem some 60 years ago in his massive work, Die Schriften des Neuen Testaments. ${ }^{1}$ His sampling method included an evaluation of the text.
$1_{\text {Hermann }}$ Freiherr Von Soden, Die Schriften des Neuen Testaments (2 vols.; Gottingen: Vandenhoeck and Ruprecht, 1911-13).
of a part of the manuscript, its form of the $\mu \circ \downarrow \chi \alpha \lambda \iota s$ and its apparatus. On the basis of his sampling, which was inaccurate, 2 von Soden grouped the mass of the minuscules. In the past 60 years some of his groups have been tested and partly confirmed. 3 Our main concern, then, is with the minuscule manuscripts and how they can be organized into manageable groups. 4

The Profile Method is basically a sampling method which classifies manuscripts and organizes them into their appropriate groups. The selection of chapters to be sampled was made on two grounds. First, it was important that a fairly large area should be represented. Second, we wanted to make sure that a manuscript which has block or box-car mixture could be detected. On these grounds, we chose three chapters of Luke. Chapter 1 was selected from the beginning of the book, Chapters 10 and 20 were selected to represent the middle and end of the book. If a manuscript changed text between Chapters 1 and 10 or 20 , the sample in most cases would indicate this. When the three chapters demonstrate that they have the same text, there is an

[^0]additional two-fold confirmation of the results from any one chapter. Thus, if in Chapter 1 a manuscript were on the border of a group, it might in 10 or 20 show a greater or lesser affinity for that group.

The readings selected for Luke were taken from the master file of the International Greek New Testament Project, which at that time had approximately 163 minuscules and most of the uncials of Luke in complete collations. 5 All these sollations have been checked at least twice and can be presumed to be accurate. All the known groups were well represented because of the policy of the Project.

The initial rule in the selection of test readings excluded all
readings due to scribal error or style. The following are examples of these:

1:25 outw] outws
10:27 ws orautov] woعautov
10:33 $\varepsilon \sigma \pi \lambda \alpha \gamma \nu \iota \sigma \vartheta \varepsilon$] $\varepsilon \cup \pi \lambda \alpha \gamma \nu \iota \sigma \vartheta \varepsilon$
Itacisms, nu-moveables, breathing marks, and abbreviations are also excluded. These readings were rejected because they have no genealogical value. 6

Readings found in more than two-thirds of every known group can also be eliminated because they are of no value in any attempt to differentiate
$5^{\text {The Claremont Profile Method was developed to meet a need of the }}$ International Greek New Testament Project. The I.G.N.T.P. suppiied the raw material of more than 200 complete and accurate collations of Luke.
$6_{\text {Because }}$ scribal error and style often cross group lines and vary even within groups, these readings cannot help in discerning the relationships between groups. In fact they tend to blur those relationships. See the article by E. C. Colwell and E. W. Tune, "The Quantitative Relationships between Manuscript Text-Types," in Biblical and Patristic Studies in Memory of Robert Pierce Casey, eds. J. N. Birdsall and R. W. Thompson, (Freiburg im Breisgau, 1963), pp. 25-32.
between groups. These readings represent the peculiarities in the Textus Receptus.

If one notes a variation within the test reading, one should determine the distinct variation. For exanple, at Luke 1:50 the Textus Receptus reads $\gamma \varepsilon \nu \varepsilon \alpha S$ र $\gamma \varepsilon \cup \varepsilon \omega \nu$. Mosi variants read $\gamma \varepsilon \nu \varepsilon \alpha \nu$ ual $\gamma \varepsilon \nu \varepsilon \alpha \nu$, but some read үعveas xal $\gamma \varepsilon v e a s$ or $\gamma \in v e a s$ xal $\gamma \varepsilon v \in a v$. The hal is the crucial or the distinctive part of the variant. When a third element enters the variation and is not represented by two-thirds of a known group and cannot be seen to have been derived from either the Textus Receptus or the distinctive variant, it then should be neutralized and treated as one would a lacuna. Sometimes there are three elements in a variation. For example, in Luke 10:39 qov λ_{0} yov is a Textus Receptus reading. Some groups read $\tau \omega \nu \lambda o \gamma \omega v$ and one group reads rous doyous. The latter two forms then become two different readings.

When selecting the test readings, one should also be careful to include the entire unit of variation. For example in Chapter 20, reading number 22, the verb changes and a pronoun is dropped as a result of the verib change.

The main rule in the selection of the test readings involved the attempt to represent all known groups. This rule was that we should choose all readings where at least two-thirds of any known group agrees. The figure two-thirds was selected so that the readings chosen would belong to more than a majority of the members of a group, and thus be a good indicator for that group. Many readings wiil be supported by two-thirds of more than one group, sometimes from throe to five or more groups.

There were selected a total of 205 test readings from the three chapters. All of these variants are significant, but after adding the
evidence of 300 minuscule MSS to the 163 used initially, six readings were found to be in less than two-thirds of the manuscripts of their particular group and were not in any other group, so they were eliminated. Two readings in Chapter 1 were eliminated because the groups that supported them were rearranged. Another reading was eliminated because it was supported only by the K^{i} group, and the K^{i} group was composed solely of uncials and was eliminated from our consideration. 7 Thus, while the initial selection of readings was based on about 163 minuscules, the final selection of 196 readings was based on about 463 MSS , or about one-fourth of the known Lukan manuscripts. The method, therefore, involves a self-correcting principle as more manuscripts are added to the profile. But the increase of 300 manuscripts involved a change in only 5 percent of the readings. 8

Of the 196 readings, 99 are unique readings. A unique reading is supported by two-thirds of only one group. The 97 remaining readings are supported by two or more groups. A11 the groups except π^{b}, M^{b}, K^{1} and K^{x} have at least one unique reading. However, two-thirds of the unique readings are in Groups 1 and 13. If a profile of just unique readings were made, one could classify a manuscript for certain groups. But the profile would tell nothing of the relationship that manuscript has with other manuscripts. Since many of the test readings are shared, a group is defined in terms of unique readings, where applicable, and readings shared with other groups. The relationsinips between groups also can be clearly presented.
$7_{\text {We }}$ are concerned mainly in this paper with Byzantine minuscule manuscripts. K^{i} according to Champlin is a distinct group within the context of K^{1}.

8See the Appendix I for a complete list of readings and their group support.

Table 1 includes an analysis of the kinds of variants involved in the test readings. In addition to the listed kinds of variants, it was found that of the 196 test readings selected, 28 involved a change of one letter only.

TABLE 1
TYPES OF VARIANTS

	Chapter 1	$\underline{10}$	$\underline{20}$	Total
Verb changes	6	7	7	20
Transpositions	8	8	13	29
Omissions	14	13	20	47
Additions	5	13	8	26
Substitutions	16	15	33	54
Case changes	3	6	4	12
Spelling changes	2	64	78	196

The source for a similar list of readings for another gospel or section of the New Testament would have to come from collations of the main representatives of the known groups. It was thought that perhaps one of the well-known critical apparatuses could be used. However, Tischendorf uses few minuscules. Legg's volumes are similarly limited. He does cite Families 1 and 13, but for a complete picture of the groups of the Byzantine text type, the only critical apparatus available is von Soden's. Unfortunately, however, the accuracy of this apparatus is in great disrepute, and justifiably so. One cannot even depend on his citation of total groups. These
critical apparatuses could be used for suggestions of readings, but group membership would need the benefit of full collations. ${ }^{9}$ The only alternative is a fresh, composite collation of the main representatives of the currently known groups. This collation would only need to be done for certain chapters. The best way to begin would be to collate the core representatives of the groups definitely identified in this study. Just as our initial test readings depended upon von Soden's groups (not his apparatus), so must the next set of readings depend on the groups herein established.

It would be well in the development of another set of test readings to avoid using Chapter 1 of any book. The first chapter of a gospel tends to be an extremely accurate copy of the exemplar or of a corrected exemplar. After the copyist has worked for a time, he tends to be less consistent. This problem will be discussed in relation to its effects on Groups 1 and 22 in the second part of this paper.

[^1]In order to compare the results of the test readings, all manuscripts in a given group are put on a graph along with their attestation for each test reading. When a reading has the attestations of two-t:hirds of a group, it is called a primary reading. If the attestation for a reading amounts to between one-half and two-thirds of the manuscripts of a group, it is called a secondary reading. All of the readings of a manuscript which are not primary or secondary are called surplus. Most manuscripts have some surplus readings, although some groups have more than others.

In order to qualify as a group under the Claremont Profile Method, a group of manuscripts must have an internal consistency when put on a profile. The manuscripts of an alleged group must have some readings where two-thirds of the manuscripts agree.

Von Soden's I $\varphi \subset$ fails to demonstrate this internal consistency. The five available $I \varphi C$ manuscripts have a total of thirteen radings in Chapter $1.0 n l y$ number 34 is read by all five manuscripts; however 34 is read by two-thirds of every group with only one exception. Numbers six and 22 are read by three manuscripts, but not the same three. The other ten readings have only one or two manuscripts attesting their evidence. Therefore, for the Claremont Profile Method, the I $I^{〔}$ manuscripts do not constitute a group. When the profiles of all the groups were completed, it was found that two $I^{\varphi c}$ manuscripts, 1207 and 1223 , fit well into the Π^{b} group.

And two other $I^{\varphi C}$ manuscripts, 1293 and 1010, fit well into the K^{1} group. This left only 945 as an $I^{\varphi C}$, and it is essentially a Kappa manuscript with some interesting surplus.

The contrast to this lack of consistency is well illustrated by the K^{r} group. Of the $60 \mathrm{~K}^{\mathrm{r}}$ manuscripts profiled, 14 have all 17 of the K^{r} readings in three chapters and no surplus at all. These 14 manuscripts have no variants in 196 places of significant variance in Luke.

Thus, in order to qualify as a group, an internal consistency must be demonstrated. This qualification was made so that the Claremont Profile Method would not be dependent on those groups used initially to select readings.

The second major qualification is that the profile of the group must be different from the profiles of all other groups. The Kappa texttype is close to the Textus Receptus with some few variations. The Kappa groups are also close to each other, with little to distinguish between groups. In the past, groups have been set up on the basis of readings unique to the group, ${ }^{1}$ but such readings in Kappa groups, if they exist at all, are few and far between. For example, Voss found only six unique K^{r} readings in all the chapters of Luke. ${ }^{2}$ When all the test readings of every group were set side by side, a pattern of readings for each group emerged. The pattern for K^{X} was different from the pattern for K^{1}. These patterns

[^2]are called profiles. For example, K^{1}, on a profile of 54 readings in Chap~ ter 1 , shows readings $6-8-22-34-52$, while K^{X} shows readings $6-9-34-36$. The groups share two readings but are distinguishable at five other places. With distinguishing profiles, unique readings are not necessary, although they are an aid even to the profile method. The profile of a manuscript will show that a manuscript belongs to a particular group and that it does not belong to certain other groups which might have some common readings. Many of the readings of $a \Pi^{b}$ manuscript are also read by the $\Pi^{\text {a }}$ group, but $a \Pi^{b}$ manuscript will also by the profile show that it is missing certain Π^{a} readings, thus it is $a \pi^{b}$ and not $a \pi^{a}$ manuscript, The profiles are important not only because they show the common agreements against the Textus Receptus, but also because they show agreements with the Textus Receptus, The Kappa groups disagree ten times in Chapter 1 with the Textus Receptus, while the Iota groups disagree 54 times in the same chapter. A manuscript then is classified not just on the basis of disagreement with the Textus Receptus (2 in the case of K^{x}) but also on the basis of agreements (52 in the case of K^{x}). So all manuscripts classified by this method in Chapter 1 are classified on the basis of 54 readings.

Another outstanding advantage of the Profile Method is that the profile of each manuscript can be instantly projected against the profile of all known groups so one can see a group or a single manuscript in its relation to all groups or a series of single manuscripts simultaneously. In the past, one could see the relationship with only one group at a time.

The test readings described in Chapter 1 and Appendix I were put on a graph sheet with numbers. The attestation of each group was marked in the
appropriate column. An " x " was marked for a group when two-thirds of that group's members read together agains: the Textus Receptus. This is called a primary reading. It was also found that of the 196 readings, many of the groups read the primary readings of other groups, but not by a two-thirds majority. To aid in distinguishing between groups, we marked a " v " whenever one-half to two-thirds of a group agreed with a primary reading of another group. This " v " marks a secondary reading. A secondary reading is only marked when some other group has it as a primary reading. Appendix II is the finished result for about 550 I'scan manuscripts. ${ }^{3}$ This appendix contains three charts which are chapter group profiles. In order to be put on this chart, a group must have a profile which is distinctive from the profiles of all the other groups. Group 7 and K^{X} in Chapters 1 and 10 have a very similar profile. Their distinguishing readings are points where mä̈y manuscripts coincidentally have the same readings. These two groups are difficult to distinguish except that in Chapter 20 there are 9 points where the two groups diverge. ${ }^{4}$

The fact that every reading in the profile does not have equal value has just been indicated. It is easy to see that a unique reading has more value for group identification. This is true, however, for some other readings also. For example, in Chapter 1 for the K^{1} group, the most vital

[^3]reading is 52 , then 8 , then 22 . Reading 22 is shared only by a part of the Π^{a} group. Readings 8 and 22 are shared by 3 and 4 non-Kappa groups respectively. Reading 6 is shared by other Kappa groups. Reading 34 is shared by all groups except 13 , so it is really of almost no value except for Group 13. It is almost a unique reading in reverse for Group 13. Thus, if a K^{1} manuscript missed reading 34 , it would not be as important as if it missed reading 52. The value differences in the various readings also extends to the type of variant. Variants that could be coincidental such as the omission of a pronoun can at times be considered as of less value than a transposition or addition. Both of these facts must be kept in mind when one is classifying a new manuscript. An unclassified manuscript will not generally fit any profile exactly, so the researcher must be able to judge which readings are crucial to any particular group and which readings are of more value, both in the sense of what is missing and what is there. This type of judgment comes to one as he works with the readings and profiles.

PART II. THE GROUPING OF BYZANTINE MANUSCRIPTS

CHAPTER III. GROUPS CONFIRMED BY THE

CLAREMONT PROFILE METHOD

Introduction
Since the Claremont Profile Method is a sampling method, its results are only indicators of what a researcher will find when he investigates the mass of details involved in these groups of Byzantine manuscripts. Many gospel manus \quad ripts change texts between gospels and even within gospels. ${ }^{1}$ Therefore, conclusions concerning groups and individual manuscripts are limited to the Gospel of Luke.

The Claremont Profile Method is a tool rhich can be used to discover new members of groups or even new groups. The method's main use will be in its application to currently unclassified manuscripts. The method will also be used to confirm the classification of many manuscripts which were classified some years ago. Even when confirming a previous classification, the resulting profile will give some added information concerning a manuscript's relationship to other manuscripts.

Our method of procedure will be to describe any prior history of a given group and its treatment up to the present. Each group will be described in terms of the Claremont Profile Method, and the various manuscripts making
$1_{\text {The scribe of the Karahissar Gospels turned "from the use of one }}$ exemplar to the use of another which contains a variant text. This happens a dozen times." E. C. Colwell, The Four Gospels of Karahissar, Vol. 1, (Chicago: University of Chicago Press, 1936), p. 220.
up the group will be discussed relative to their value for the group. Clues to the identification of new manuscripts for each group will be given so that anyone can apply this method with dexterity to manuscripts or collations which they possess or with which they can work.

The total list of groups confirmed is as follows: $1,13,22, \pi^{a}$, $\Pi b, M^{a}, M^{b}, 1424,1216, \Lambda, K^{r}, \Omega, K^{X}$ and 7.

The method is not an attempt to replace more detailed studies of groups. As we discuss the core of a group, there is great certainty as to its membership; and as we near the periphery of a group, there is less certainty. The following groups have been confirmed as groups by the Claremont Profile Method, but they still require more detailed study: Groups $M^{a}, M^{b}, 1216,22,7$ and $\Lambda . \Omega, K^{\mathrm{X}}, \mathrm{K}^{\mathrm{r}}$ are in this same area, but because of the number of manuscripts, a detailed study of all of them would be almost impossible.

Since we produced our own group definition, some groups with which we started in Luke were not confirmed as groups in Luke. These groups include the Patmos Group, $I^{\varphi C}, I^{O}, I^{a}$ and I^{σ}.

The total $I \varphi$ group of von Soden was not confirmed as a group, but the sub-groups with one exception were confirmed. This method can detect some inter-group relationships, as in Group 1216,2 but it is limited in its conclusions to those readings sampled. The number of readings sampled is large enough for the study of several groups together, but when one group is studied in detail, complete collations are needed for an accurate study. 3
2^{2} See the discussion of Group 1216 in this Chapter.
3A detailed study of a group will generally involve the complete collation of a whole book and an analysis of all the variant readings so that the inter-group relationship can be established.

Our conclusions then relative to previously studied groups such as 1,13 and π^{ab} will not be startling, though at points this method has a contribution to make.

The groups resulting from our definitions include the following previously identified groups: Family 13, Family 1, Family Pi, $\mathrm{K}^{\mathrm{r}}, \Omega$ and Family 1424. Our terminology uses the word "group" rather than "family."4 Group 1424 is not the total I^{φ} group of von Soden but only his Ipa group.

Other groups resulting from our definitions include groups not worked on in detail by anyone other than von Soden. These groups include: 22, $7, M^{a}, K^{x}, 1216$ and Λ. M^{b} is a totally new group identified by our profile method. Since at times references are made to von Soden's grouping, a chart is included here which gives the equivalent terminologies for all groups. We have followed the standard procedure of naming each group by its most prominent manuscript.

$$
\begin{array}{ll}
\mathrm{I}^{\mathrm{l}}=\text { Group } 13 & \mathrm{~m}^{\mathrm{a}}=\text { Group } \mathrm{I} \\
\mathrm{I}^{\mathrm{nb}}=\text { Group } 22 & \mathrm{I}^{\mathrm{kac}=\text { Group } \Pi^{a}} \\
\mathrm{I}^{\mathrm{kb}}=\text { Group } \Pi^{\mathrm{b}} & \mathrm{I}^{\varphi} \mathrm{a}=\text { Group } 1424 \\
\mathrm{I}^{\varphi \mathrm{b}}=\text { Group 7 } & \mathrm{I}^{\varphi \mathrm{r}}=\text { Group Ma } \\
\mathrm{K}^{1}=\text { Group Omega }(\Omega) & \mathrm{I}^{\mathrm{r}}=\text { Group Ldmbda }(\Lambda) \\
\mathrm{I}^{\beta}=\text { Group } 1216 &
\end{array}
$$

[^4]The terms K^{x} and K^{r} are retained because they are still known and used. M^{b} is used for the new group because it is related to the group M^{a}, which is led by the uncial M.

Group 13^{5}

William Hugh Ferrar gathered four manuscripts which had been recognized as belonging to each other, and attempted to reconstruct an archetype. ${ }^{6}$ These 4 MSS (13, 69, 124 and 346) were called the Ferrar Group. Von Soden worked with 13 manuscripts and divided them into the following groups: $826,346,543,13$ and their relatives 230,828 and $837 ; 788,124$, 69 and 174 ; and 1689 and 983.7 Lake in his study of Family 13 in Mark did not have a collation of 230 or 837 and regarded 174 as Family 13 except for Mark. The remaining manuscripts he arranged as follows: 8

${ }^{5}$ Group 13 has in the past been called Family 13 and the Ferrar Group. Von Soden labeled it J in Volume I and I^{l} in Volume $I I$.
${ }^{6}$ William Hugh Ferrar, Four Important Manuscripts of the Gospels, ed. by T.K. Abbott (Dublin: Hodges, Foster and Figgis, 1877).
${ }^{7}$ Von Soden, op. cit., Vol. I, p. 1066f. These three groups correspond to his second volume where he calls the first group I ${ }^{l b}$ and the third group I'a.

8Kirsopp \& Silva Lake "Family 13" Studies and Documents, Vo1. XX (London: Christophers, 1941), p. 42.

Geerling's study of Family 13 in Luke 9 follows the Lake diagram except he connects " c " directly to " x " and rearranges the " b " group as follows:

For our study 1689 and 983 were not available and 837 does not contain Luke. Manuscripts 174 and 230 do not have the profile of a Group 13 manuscript. The remaining 8 manuscripts ($826,346,543,13,828,788$, 124 and 69) do not break into the groups listed by von Soden. These 8 manuscripts have a high degree of homogeneity with some slight variation. It was mentioned in Part I that this method was not meant to replace detailed group studies. Our conclusions concerning this group are in agreement with the detailed studies with the one exception of manuscripts 230 and 174. Our studies show that these two manuscripts have a greater affinity for the Λ group and will be studied in more detail there. 10
${ }^{9}$ Jacob Geerlings "Family 13," Studies and Documents, Vol. XX (Salt Lake City: University of Utah Press), 1961, p. 19.

10 The relationship of 174 and 230 to the Λ group was found because all the groups were being studied simultaneously. The problem with detailed group studies is that they cannot see a manuscript's relationship to other groups. Manuscripts 174 and 230 do have some Family 13 readings but all groups have some inter-relationships. The Profile Method, by sampling, can point out these inter-relationships. The Profile Method can say that a certain manuscript not only belongs to a particular group but that it does not belong to other groups. This is the error of putting 174 and 230 in Family 13. This is the same error that Champlin comitted when he refused to recognize M as a member of the $I^{\varphi} r$ group (Group Ma). Russell Champlin "Family E and its Allies in Matthew," Studies and Documents, Vol. 8, (Salt Lake City: University of Utah Press, 1966), p. 161. Neither 174 or 230 has the polxa 1 , after Luke $21: 39$ as do all the manuscripts in Group 13 which we have studied.

TABLE 2^{11}
GROUP 13

Group 13 has 74 readings against the Textus Receptus, 31 of these being unique. A very weak member of the group can still be readily identified as is the case for manuscript 124. Manuscript 124 has 16 of the 31 unique readings of Group 13. Manuscript 174 has only 1 unique Group 13
$11_{\text {In }}$ this table and the tables of various groups which follow, each manuscript is described by von Soden's classification, (first column), the date of the manuscript (second column), and the Gregory number, (third column). The first number under each chapter indicates the amount of primary readings for that group. The second number, if there is one, indicates the amount of secondary readings. As each manuscript is described, the number of primary readings is given first, then the number of secondary readings, and finaliy the surplus.

Vertical numbers $1-54$ represent the test readings of Luke 1. Vertical numbers $1-64$ represent the test readings of Luke 10. Vertical numbers $1-78$ represent the test readings of Luke 20. (These readings are listed in Appendix I.)

Horizontal numbers are the manuscripts belonging to the group.
X means that the manuscript agrees with the test reading.
0 means that the manuscript has a lacuna at this place or that.it does not agree either with the Textus Receptus or with the test reading.

A blank space means that the manuscript agrees with the Textus Receptus.

reading and 230 has none. Manuscript 124 in Chapter 10 reads 33 and 35 with 174 and 230. Readings 33 and 35 are important Group Λ readings. There is probably some connection between the periphery of Group 13 and the core of Group Λ. The surplus of 124 is varied in Chapters 1 and 10 but in Chapter 20 the 4 surplus readings are all unique Group 1 readings. The surplus of 69 is also varied but shows no affinity for any particular group.

Manuscript 828 in Luke $1: 1-21$ reads like a K^{X} manuscript and misses 4 primary readings of Group 13. After verse 21 and continuing through Chapters 10 and 20, it misses only 1 primary reading and has no surplus.

Group 1^{12}
This family of manuscripts was first identified by Kirsopp Lake. At the time of his publication, the group consisted of the following manuscripts: 1, 118, 131, 205 and 209. Lake was convinced that 205 was a copy of 209 , so he did not use it in his study. The diagram of their relationships was as follows:13

1902

1928

12 Group 1 is the same as Family 1 . Von Soden called this Group In and divided it into two sections. Ina will be discussed here. Inb corresponds to Group 22. I^{2} is discussed in Volume I in von Soden under the label H^{r}.
$13_{\text {Kirsopp }}$ Lake, "Codex 1 of the Gospels and Its A11ies," Texts and Studies, Vol. 7, no. 3, (Cambridge: University Press, 1902), p. xxiv.

The letters represent common ancestors which are not extant. According to Lake, Group 1 was a part of a large group which included Family 13, 22, 28, 565 and 700. This was the basic Caesarean group before Theta. A diagram of Family 1 as Lake conceived of it in 1928 is presented to show some development.

Von Soden discusses Group 1 under the label H^{r} in his prolegomena volume. He lists 8 manuscripts (1, 118, 209, 131, 205, 205abs, 1582 and 2193). 14 Manuscripts 205 and 205abs. are copies of a brother or father of 209 and lack any independent value as text witnesses. This is in agreement with Lake's prior statement.

Manuscripts 118 and 209 are closely related and stem from a line close to 1 , perhaps as cousins. Manuscript 131 is related to 1 , 118 and 209 but still has an independent streak. Manuscripts 1582 and 2193 are very close to each other and to 1,118 and 209 but also demonstrate an independent branch. Below is the author's picture of von Soden's words.

The H^{r} group (Group 1) also includes a discussion of our Group 22 but this will be discussed in that section. The relationship of Group 1 to Group 22 is not so close as to make them one group.

14Von Soden, op. cit., Vo1. I, p. 1047 .

Von Soden made a gross error in dividing 1 and 1582 from 118 and 209 in his second volume. In the second volume, Group 1 is called $I^{\eta a}$ and only includes 1582,2193 and 1. Manuscripts 118 and 209 are put in a group called $I^{\eta b}$ along with 872 and 22.15 This is contrary to all his conclusions in the first volume and must be presumed to be an error. There is a group which might be the equivalent of $I^{\eta b}$ but this does not include 118, 209 or 872 at least in Luke. Without these three manuscripts $I^{\eta b}$ consists only of 22. Manuscript 22 does head a group which is slightly related to Group 1 and will be discussed below.

Of the 8 manuscripts listed by von Soden in Volume I, we have six of these manuscripts profiled (1, 118, 209, 205, 131 and 1582). Manuscript 205abs is, according to prior studies, a copy of 205 and is not profiled. Manuscript 2193 is on Mount Athos and not available for profiling.

In Chapter 1 these 6 manuscripts split into two groups. Manuscripts 118, 205 and 209 have the primary readings for the group and no secondary readings. Manuscripts 1,131 and 1582 have the primary readings plus 8 other readings, which are termed secondary readings. Manuscripts 118, 205 and 209 do not agree with Group 22 in Chapter 1. There are 7 real differences so the organization of $I^{\eta b}$ in von Soden's second volume is false for Luke.

The difference is much greater in Chapters 10 and 20. Chapters 10 and 20 have 61 readings against the Textus Receptus, and all six manuscripts in question generally agree together. In only one reading in the two

15Von Soden, op. cit., Vol. II, p. xiv.
chapters does this split of 118, 205 and 209 against 1,131 and 1582 occur. ${ }^{16}$ On the basis of these findings a stemma might look like this:

Manuscript 131 does have the independent streak mentioned by von Soden. It misses several primary readings and adds several readings. These surplus readings agree with the Group II every time. The profiles also show that 1 and 1582 often agree together against all four other manuscripts in the group.

While profiling manuscripts in the Vatican Film Library in St. Louis, Manuscript 884 was found to have a very distinctive text in Chapter 20. Manuscript 884 is an eleventh century commentary classified A^{a} by von Soden. The text begins at Luke $3: 1$, and in chapter 10 it has a basically K^{x} text with 8 readings against the Textus Receptus. In Chapter 20 it has 27 of the 35 primary readings of Group 1 and its one extra reading agrees with 1 and 1582. It is an extraordinary text and needs further study to demonstrate its value for Group 1. The century spread on these close manuscripts is almost unbelievable. There is one manuscript for each century from the tenth to the fifteenth and only the fourteenth century has two representatives. Manuscripts 205 and 209 are identical in profiles and agree 69 times in three chapters against the Textus Receptus.

16 See the manuscript profiles of Group 1 for Chapter 10. Reading 23 has 1,131 and 1582 against 118, 205 and 209. There are several other places where 1 and 1582 read against all the rest.

TABLE 4

GROUP 1

Classi-fication	Century	Gregory Number	1	Chapter 10	$\underline{20}$	Total
			8-8	26-1	35-0	69-9
Ina	12	1	7-8-8	26-1-3	35-0-1	68-9~12
In ${ }^{\text {a }}$	949	1582	7-8-6	25-1-3	35-0-1	67-9-10
In	14	131	5-8-3	24-1-2	33-0-1	62-9-6
$I^{\square b}$	13	118	7-0-2	26-0̂-2	35-0-0	68-0-4
I^{η}	15	205	8-0-0	26-0-0	35-0-0	69-0-0
$I^{\square b}$	14	209	8-0-0	26-0-0	35-0-0	69-0-0
$A^{\text {a }}$	11	884	def.*	3-0-5	27-0-1	30-0-6

Of the 196 test readings for three chapters, Group 1 reads 78. This is 40 percent and is the most divergent group from the Textus Receptus in this study. Group 1 has 34 unique readings. A manuscript belonging to this group would be easily identifiable after a sampling. 17

I'The discovery of the significance of manuscript 884 demonstrates the ease and efficiency with which this instrument can work. It took 30 minutes to sample 884 and compare its readings with the established profiles and find that it fit Group 1 in Chapter 20. There must be other significant manuscripts among the many Byzantine minuscules which lie about gathering dust and age and decaying beyond use.

Group 22^{18}
Manuscript 22 has long been recognized as an important witness. Lake in his volume on Codex 1 refers to it as a representative of the Caesarean text. Von Soden was the first to put 22 in a small group. In Volume I he lists 22,1192 and 1210 as being a small family with 1278 , 1005, 924 and 697 as its descendants. 19 In a later section he lists 660 , 2284 and 1365 as Iota manuscripts which stand near to $\mathrm{Hr}^{\mathrm{r}} .20$

Von Soden does not clearly discuss the relationship between the manuscripts headed by 1 and those headed by 22. They are both listed under the H^{r} label in Volume I and they are divided in Volume II into $I^{\text {na }}$ and $I^{\eta b} .21$ The Chapter 1 profile of Group 22 shows some relationship to Group 1. They share 10 readings and two of these are not shared with any other group. However, Chapters 10 and 20 do not show any relationship. The great difference in total variations from the Textus Receptus between Group 1 and Group 22 seems to demonstrate their lack of relationship overall. ${ }^{22}$

It is apparent from the above point, from the relationship of the two groups withini Group 1, and from other examples, that the first chapter
$18_{\text {Group }} 22$ is approximately equal to von Soden's $I^{\eta b}$. $I^{n b}$ is discussed in volume I under the label H^{r}.
${ }^{19}$ Von Soden, op. cit., Vol. I, p. 1043.
$20_{\text {Von }}$ Soden, op. cit., Vo1. I, p. 1242.
$21_{\text {Legg }}$ in his volumes on Matthew and Mark treats manuscript 22 as a member of Family 1. Novum Testamentum Graece Secundum Matthaeum (Oxford: Clarendon Press, 1940).
${ }^{22}$ Group 1 has a total of 78 readings against the Textus Receptus while Group 22 only has 36 , of which 18 are shared with Group 1.
of Luke is unusual. This has been explained by the fact that a scribe was always very careful as he began to copy a manuscript; but as the task went on, he became less careful and perhaps also less inclined to be consistently correct. If Chapter 1 were dropped from our study, only two groups would be affected significantly. Group 1424 would lose one of its two extant members, and the K^{1} group would lose some very helpful readings. ${ }^{23}$

Of the 10 manuscripts mentioned above as grouped by von Soden, 697 , 924 and 660 were not available. Manuscript 2284 has a K^{r} profile and was reclassified. To the remaining manuscripts was added 2372 which was profiled in Baltimore and had not been previously classified. These 7 manuscripts (22, 1192, 1210, 1278, 1005, 1365 and 2372) show a distinct profile in all three chapters. They also divide themselves into two parts with 22 and 1210 being almost identical. Manuscript 1192 joins 22 and 1210 in being set apart from 1005, 1365, 1278 and 2372 . The break between these two parts is real but not substantiai enough to demand treating the MSS as separate groups.

There is no apparent reason to separate 1365 from the other members of this group as von Soden does.

[^5]TABLE 6

GROUP 22

Von Soden						
fica-		Gregory		Chapter		
tion	Century	Number	1	10	$\underline{20}$	Total
			9-3	9-0	11-4	29-7
$\underline{I}{ }^{\text {b }}$	12	22	7-3-3	8-0-3	9-4-0	24-7-6
$I^{n b}$	11	1210	8-3-2	8-0-3	9-4-0	25-7-5
$I^{n b}$	11	1192	7-3-4	7-0-0	9--3-0	23-6-4
I^{\square}	14	1005	8-0-0	9-0-0	10-0-0	27-0-0
I'	12	1365	8-0-2	9-0-0	10-0-0	27-0-2
none	13	2372	8-0-0	9-0-0	9-0-1	26-0-1
I^{n}	12	1278	9-0-0	6-1-1	9-1-0	24-2-1

Group 22 has three unique readings and a manuscript belonging to this group would be readily identifiable in any chapter.

Group Ma24

According to ven Soden the $I^{\varphi r}$ group (Group M^{a}) is an offshoot of $I \varphi$ with very few peculiar readings. He identifies 27 manuscripts as $I \varphi r$ (Group M^{a}) and divides them into three groups. 25 The first group has only two manuscripts--1194 and 10. The second group has 15 manuscripts and the third group has ten manuscripts. We have a profile of 1194 in the firsi group, 6 profiles of the second group, and 5 profiles of the third group. 1194 is a definite M^{a} manuscript. In the second group, 164 and 1443 both have some M^{a} readings, but they also have some Group Λ readings and are a strange mixture. 1202 and 1237 and 1386 are all M^{a} but very weak. These are all in the second group. In the third group we have five of the ten manuscripts, and this is the real core of the M^{a} group.

In addition, our studies on other manuscripts found that 569, which von Soden classified as belonging to the A^{c} group, was, at least in Luke, a M^{2} manuscript. Manuscripts 1458 and 1415 , both classified by von Soden as K^{X} manuscripts, were, according to the Claremont Profile Method, found to belong to the M^{a} group. And these should belong to von Soden's third group, as he lists them in the prolegomena.

Therefore the M^{a} group is represented by the following: 569, 27, 71, $1458,1415,1194,692,1222,1237,1202,1386$ and M. In the table below, the manuscripts are listed in their approximate agreement with the core of the group.

24 Von Soden's $I^{\varphi r}$ group is called M^{a} because the uncial M is the best known manuscript in the Group. The superscription denotes that this is the first of two groups which are related.

$$
25 \text { Von Soden, op. cit., Vol. I, p. } 1142 .
$$

TABLE 8
GROUP Ma IN ALL CHAPTERS

Von Soden Classi-						
fica- tion	Century	Gregory Number		1	Chapter	

The manuscripts in Table 9 belong to this group in at least one chapter. In the table below, each chapter of a manuscript is identified and the prior classification of the manuscript is given. 26

[^6]
TABLE 9

GROUP M^{a} IN AT LEAST ONE CHAPTER

Von Soden					
Classi- fication	Century	Gregory Number	Chapter 1	Chapter 10	Chapter 20
A^{C}	11	127	Ma	M^{3}	$\mathrm{K}^{\text {X }}$
A^{C}	12	132	M^{a}	M^{a}	$\mathrm{K}^{\mathbf{x}}$
None	10	1220	mixed	$M^{\text {a }}$	M^{a}
I^{k}	11	1014	mixed	$M^{\text {a }}$	$M^{\text {a }}$
$\mathrm{K}^{\mathbf{X}}$	1307	1569	M^{a}	mixed	$M^{\text {a }}$
$\mathrm{I}^{\mathbf{r}}$ or $\mathrm{I}^{\text {a }}$	13/14	1342	M^{a}	wild	K^{X}
K^{X}	13	830	mixed	M^{a}	$\mathrm{K}^{\mathbf{x}}$
$K^{\mathbf{X}}$	12	1228	def.	mixed	M^{2}
I^{k}	1067	1209	$\mathrm{K}^{\mathbf{X}}$	K^{X}	$M^{\text {a }}$

In Volume II von Soden uses for his critical apparatus manuscript 1194 from the first group and 4 manuscripts from the third group and none from the second group. Von Soden says that the M^{a} group has no value for the history of the later textual period, that it only illustrates the later fate of the $I \varphi$ type. Schubert describes this M^{a} group as a weaker witness to the lectionary text. This would agree with von Soden, who called it a very weak I^{φ} offshoot.

The uncial M is a member of this group. As the profile charts reveal, it is not the best member because it misses several primary readings. The main characteristic of M is its surplus. It has 11 surplus readings in the three chapters. But this is to be expected since it is an older manuscript.

The non-kappa surplus generally agrees with the $\mathbb{I I}^{\text {a }}$ group more than with any other group. 27 The $\Pi^{\text {a }}$ group is probably one of the earliest forms of that which produced the Byzantine Text.

The $M^{\text {a }}$ group has 34 primary readings and 6 secondary. Of the 34 primary readings, 7 are unique M^{a} readings. Most of the M^{a} readings are non-kappa readings. In Chapter 1 the readings most often agree with Group 1424, but in Chapter 20, they agree most often with the π^{a} group.

$$
\text { Group } \mathrm{M}^{\mathrm{b}}
$$

The M^{b} group is a set of manuscripts which was previously undiscovered. It was formulated because of the research involved in the Claremont Profile Method and as a direct result of the application of the Profile Method to the manuscripts at our disposal. This group consists of the manuscripts presented in Table 11. 1466, 2146 and 1204, all manuscripts previously classified as K^{X} by von Soden, have at least one chapter that shows an M^{b} tendency.

Being a group which was formed from the current profiles, this group does not have any unique readings in the three chapters. Its profile shows that it is closely related to the M^{a} group, and this is why the term M^{b} is

27In an appendix on Codex M, Champlin takes issue with von Soden's classification of M as an $I \varphi r$ manuscript. He does this, not through a study of the $I^{\varphi r}$ group of manuscripts but, because of conclusions drawn from a comparison between uncials. The differences between the Iota and Kappa groups of von Soden are small in comparison with the differences between text-types and families. Thus, Champlin does not have an appreciation of the small, yet significant differences between these Byzantine groups. This is seen in his whole thesis that Family E is an entity within the K^{1} group. Russell Champlin, "Family E and Its Allies in Matthew," Studies and Documents Vol. 8 (Salt Lake City: University of Utah Press, 1966), pp. 163-69.

TABLE 11
GROUP M^{b}

Von Soden						
Classi- fica- tion	Century	Gregory Number	1	Chapter 10	$\underline{20}$	Total
			6-0	7-3	8-2	21-5
I^{k}	11/12	1455	6-0-0	7-0-0	8-0-0	20-0-0
K^{r}	1314	1630	5-0-0	7-2-5	7-2-2	19-4-7
none	13	2394	4-0-2	6-1-0	8-0-1	18-1-3
none	11	2613	6-0-0	7-1-0	7-0-1	19-2-1
K^{X}	12	1315	6-0-1	7-1-1	7-0-3	19-2-5
$K^{\text {X }}$	1123	1195	4-0-1	6-2-0	8-2-1	18-2-2
Ik	11	776	6-0-0	4-1-0	6-0-0	15-2-0
K^{x}	13	1563	3-0-4	5-1-0	7-0-1	15-1-5
IO	12	443	$4-0-2$	4-2-3	7-1-2	14-4-7
K^{X}	1121?	159	4-0-2	4-2-3	7-1-1	15-3-6
K^{X}	14	1326	6-0-2	4-2-4	7-2-1	16-5-7
$I^{\varphi a}$	1322	349	4-0-0	4-2-3	7-2-2	15-4-5

used to describe the group. It is most distinctive in Chapter 20, more because of the readings that are missing than the agreements that it has against the Textus Receptus with other manuscripts. Thus, this group is best identified in Chapter 20. One part of the group has reading 4 and then skips to reading 33. The other part of the group has no reading until 33. It was this peculiarity in several manuscripts that gave the clue to putting these manuscripts together.

There are three readings in Chapters 10 and 20 which show an intragroup division. 28 of the 13 manuscripts, 6 read with the Textus Receptus and 7 read against the Textus Receptus. In two of these cases the variant fromi the Textus Receptus represents the Kappa text.

Manuscripts 443 and 159 have only 2 variations in the 196 test readings and they agree together against the Textus Receptus 23 times. They are significantly related.

Group 1424
Streeter's Family 1424 (von Soden's $I \varphi$) is one of the most diverse groups that von Soden formulated. It is really too diverse to prove itself as a group in terms of the Claremont Profile Method. The $I^{\varphi C}$ group has already been discussed in part, and it was demonstrated that this was not a group in terms of the Method. However, in the course of our research we discovered another branch of the I^{φ} group which von Soden had not formulated into a group. This branch, which we have entitled M^{b}, is closely related to von Soden's group $I^{\varphi r}$. (Group M^{a}).

Of the 196 profile readings, 80 have the support of one or more of the I^{φ} groups. However, 44 of these 80 readings are supported by only one I^{φ} group. Of the remaining 36 readings, five of them are supported by all four of the I^{φ} groups. However, in each case there is wide support for other groups also. In 10 cases, 3 of the I^{φ} groups agree. And in 21 cases, two of the groups agree. The closest relationship that can be seen through

28 The three readings are Chapter 10 , reading numbers 22 and 23 , and Chapter 20, reading 4. The evidence is clearly seen on the profiles for these two chapters of this group. Reading 75 in Chapter 20 could almost be added to these other readings.
this particular study was the fact that the $I^{\varphi r}\left(M^{a}\right)$ group and the new group, M^{b} read together 8 times in the 21 double readings. Thus the various combinations indicate some group inter-relationships, but very loose except between the groups just mentioned. The I^{φ} manuscripts as a total did not have either the inner consistency which is needed for a group nor the external distinctiveness of a profile in order to qualify as a group under the Claremont Profile Method. Therefore, each of the sub-groups of theI φ group will be treated separately. The sub-groups also were renamed according to their leading manuscript. 29

In the prolegomena, von Soden lists the $\mathbb{I}{ }^{\text {a }}$ group as the central core for the I^{φ} group, and under this central core he lists 5 manuscripts. 30 In the preface to the critical apparatus, Volume II, he also lists one other manuscript for the gospel of John, 1188. Of these 6 manuscripts, we have 4 ($517,349,1424,1188$) in our files. Manuscript 349 does not belong to this group in Luke. It has been reclassified and put into the M^{b} group, which is the new group we found that is related to the M^{a} group. Manuscripts 517 and 1424 agree 12 times in Luke 1, but 517 is not extant after 6:42 and therefore could not be used for Chapters 10 and 20. But 1424 in these two chapters demonstrates a substantially distinctive text from the Textus Receptus. It varied 44 times in our readings for all chapters. 1188 has one unique Group 1424 reading in Chapter 1, but is not close to Group 1424
$29 I^{\varphi} \mathrm{a}=1424$, $I \varphi b=7$, $I \varphi c$ is not a group, and $I^{\varphi} r^{r}=M^{a}$. Throughout this work we are using the neutral term group rather than the term family, in order not to pre-judge whether a group is a true family of manuscripts.

30Von Soden, op. cit., Vol. I, p. 1109. The five manuscripts listed by von Soden are $517,349,1424,954$ and 1675.
at all in any other chapter and was not therefore classified as a Group 1424 manuscript. Manuscripts 954 and 1675 are both on Athos and were not available to us except in von Soden's apparatus. Von Soden's evidence for these two manuscripts was used in order to make a profile for this group in Chapters 10 and 20.

Streeter tested his Family 1424 to determine the relationship it sustained with Family Theta, the Caesarean text. He concluded that Family 1424, when it varies from the Textus Receptus agrees with one or another member of the Theta family. He therefore calls Family 1424 a "genuine and important constituent of Family Theta." 31 Streeter used the 28 manuscripts which von Soden listed as the I^{φ} group in Volume II of his text. He writes that von Soden did discover a real group in I^{φ}, the Family 1424 group of manuscripts, though perhaps a few of the less important manuscripts which he used might not or should not be included. 32 Lake, Blake and New in a later study on the Caesarean text did not use 1424. They said that Streeter was probably right, but that Family 1424 was a much less important witness to the Caesarean text. 33

Streeter's Family 1424 was made up from all von Soden's I^{φ} groups. Group 1424 in this paper refers only to what von Soden listed as I^{φ}. The Family 1424 group of Streeter is certainly not a family in terms of close relations. Some of the manuscripts especially in I^{φ} a (Group 1424) do have

31B. H. Streeter, The Four Gospels (New York: Macmillan \& Co., 1956), p. 578.

32 Ibid., p. 578.
33Kirsopp Lake, Robert P. Blake, and Silva New, "The Caesarean Text of the Gospel of Mark," The Harvard Theological Review, XXI (1928), p. 212.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Caesarean readings. The $I \varphi^{b}$ (Group 7), I^{C} and $I \varphi^{r}$ (Group M^{a}) manuscripts, however, are not related well either to each other or to Groups 1 and 13 as Group 1424 is.

The evidence for the 1424 group, according to the Claremont Profile Method, is not great, due to the scarcity of manuscripts. From the studies that we have been able to carry out, it appears that it is a firm group in that it does vary substantially from the Textus Receptus. All of the nonKappa readings of Group 1424 are read also by Group 1 and or 13 with only 3 exceptions. The Chapter 20 profile of Group 1424 is very close to a Kappa profile. There are enough unique readings and there is a sufficiently distinct profile in Chapters 1 and 10 that no manuscript belonging to Group 1424 could be missed.

Group 7

Group 7 approximates von Soden's $\mathrm{I}^{\varphi \mathrm{b}}$ group. This group he defines as being somewhat related to Group 1424 but just a little further away. 34 In our initial study on this group, we could not find an inner consistency for the group, nor could we find a distinctive profile. The profile of all the $I^{\varphi b}$ manuscripts classified.by von Soden, which we used, was extremely close to the K^{X} profile and not easily distinguishable. However, within the $I^{\varphi b}$ group there are a series of manuscripts headed by 7 which von Soden lists as being closely related within the $I^{\varphi b}$ group. 7 and 267 are two of these manuscripts and are extremely close. 1557, 1181 and 2144 are also listed by von Soden, but they are not close in this case. There were four

34 Von Soden, op.cit., Vol. I, p. 1110.
other manuscripts listed by von Soden which were not available to us. It was found during our research that 1654, a manuscript classified by von Soden as I^{a}, was very close to 7 and 267° in Luke. Von Soden had clässified 1654 with 1542 as $I^{\text {a }}$ manuscripts and as brothers. They are not so in Luke. In addition, manuscript 1685, an $I^{\varphi b}$ but not in this particular group identified by von Soden, was also found to be fairly closely related to 267 and 1654. These four manuscripts ($7,267,1654$ and 1685) constitute our Group 7. Schubert's study connected the $I^{\varphi a}$ (Group 1424) and $I^{\varphi b}$ (Group 7) groups very closely to the lectionary text of Mark. $I^{\varphi} \mathrm{C}$ and $\mathrm{I}^{\varphi r}$ (Group M^{a}) groups were less closely connected. ${ }^{35}$ In a test with $16 I^{\varphi}$ abr manuscripts in Chapter 4 of Luke, there were 21 major lectionary text readings. 36

Between 13 and 16 of the manuscripts agreed in 8 of the 21 readings. These 8 readings are also read by most $\mathrm{K}^{\mathrm{i}}, \mathrm{K}^{1}, \mathrm{~K}^{\mathrm{X}}$ and K^{r} manuscripts and are therefore Kappa or Byzantine readings. Manuscripts 7, 267, 1654 and 1685 (Group 7) agreed together 8 other times. Manuscripts 517 and 1424 (Group 1424) agreed together 5 times, and 27, 71,2394 and 2613 (Group Mab) agreed together three times. Below is a chart of agreements of the various manuscripts with the 21 major lectionary text readings in Luke 4.

Seven times in major lectionary readings in Chapter 20, 7, 267 and 1654 agree alone or with only one of the $16 I^{\varphi}$ abr manuscripts. 1685 agrees once with this combination. There is clear evidence here that the manuscripts
${ }^{35}$ Paul Schubert, "The Text of the Markan Week-day Lections and von Soden's I^{φ} Text," Studies in the Lectionary Text, ed. by E. C. Colwell and D. W. Riddle, (Chicago: University of Chicago Press, 1933), p. 56.
${ }^{36}$ See note on the determination of the Major Lectionary Text (in section on K^{r}).

TABLE 14
AGREEMENTS IN MAJOR LECTIONARY READINGS IN LUKE 4

M	115	349	9	179	185	27	71
8	8	8	9	9	9	11	11
2394	2613	517	1424	1685	1654	7	267
11	11	13	13	13	15	16	16

in Group 7 are very closely related to the Major Lectionary Text. The Group 1424 manuscripts also show a major relationship to the text but not quite as close as the group headed by manuscript 7. The other I I b manuscripts do not show up as being related to the major lectionary text, and so this group of manuscripts headed by 7 has been set off as a group.

Von Soden lists $48 \mathrm{I}^{甲 b}$ manuscripts. He used 12 of them in Volume II. We have 15 that were profiled. Three of them (7, 267 and 1685) belong to this new group, Group 7. One of them, manuscript 2191, belongs to the K^{X} group and manuscript 182 belongs to the $\Pi^{\bar{a}}$ group. The remaining ten $I^{\varphi b}$ manuscripts do not show any substantial difference in any chapter from the K^{X} group except in the amount of miscellaneous surplus. Surplus is especially heavy in Chapter 1. And much of the surplus agrees with Group 1424 or Group $\mathrm{Mb}^{\mathrm{ab}}$.

In Group 7, 3 of the 4 manuscripts are former $I^{\phi b}$ manuscripts, but since the $I^{\varphi b}$ manuscripts do not appear to be related, Group 7 can not be represented truly as the $I \varphi^{b}$ group. Manuscript 1685 belongs to Group 7 but is not in the central core of the group. In the profiles of the three chapters, Chapter 20 is the best and should be used as decisive in determining whether a manuscript belongs to this group. Most manuscripts and groups are

classifiable by means of any one chapter, but this is not true for Group 7. Chapter 20 is best because there is one unique Group 7 reading and five non-kappa readings. This is important because the group is so close to most Kappa manuscripts. The non-kappa readings in Chapter 20 have no particular affinity for any one group.

Group 1216^{37}

Von Soden lists 12 manuscripts as the strong branch of I^{β}. The best witnesses to $\mathrm{I} \beta$ are 1216,348 , 1279, 477 (Lk. \& Jn.), 2174, 829, 1579 and 16 ; then follows $152,1243,184,513$ and 477 (Mt. $\& M k$.). 38 A list of 17 manuscripts which belong to a weak I^{β} branch comes after this. ${ }^{39}$ This weak branch contributes one manuscript (1588) to his critical apparatus, and it is in the $I^{\beta b}$ group in Volume II.

The basis for making $I^{\beta a}$ and $I^{\beta b}$ is not evident in von Soden, and the separation into two groups does not hold up when examined by the Claremont Profile Method. $I^{\beta b}$ is not the weak branch he speaks about in Volume I. We have profiles for $4(120,232,880$ and 217) of the 17 manuscripts in the weak branch. Manuscripts 232,120 and 880 have a very remote hint of I^{β} but they are better classified as $K^{\mathbf{x}}$ manuscripts. 217 is a very weak I^{β} and similar to 16 . This I^{β} group was studied in part by E. C. Colwe11, who confirmed the following manuscripts as supporters of the I^{β} text in Mark: $1216,16,1243,11,120,1815$ and 330.40
${ }^{37}$ This is the set of manuscripts von Soden called I^{β}. It is labeled Group 1216 because 1216 is the best manuscript which can represent the group.

38Von Soden, op. cit., Vo1. I, p. 1152.
${ }^{39}$ Von Soden, op. cit., Vol. I, p. 1152.
40 E. C. Colwell, The Four Gospels of Karahissar, Vol. 1 (Chicago: University of Chicago Press, 1936), p. 177.

TABLE 16
GROUP 1216

Von Soden						
Classi-fication	Century	Gregory Number	1	Chapter 10	20	Total
			13-1	12-	13-	38-1
$I^{\beta b}$	11	1216	13-1-2	12-0	13-0	38-1-2
I^{β}	13	184	13-1-2	11-0	12-0	36-1-2
$I^{\beta a}$.	1022	348	13-1-3	10-1	13-0	36-1-4
I^{β}	12	829	13-1-2	12-2	11-0	36-1-4
$I^{\beta} \mathrm{a}$	11	1279	13-1-0	10-0	11-0	34-1-0
I^{β}	11	1243	12-0-1	12-0	13-0	37-0-1
$I^{\beta b}$	11	1579	11-0-2	12-0	13-1	36-0-3
I^{β}	13	152	12-0-1	12-1	10-3	34-0-5
I^{β}	14	2174	4-0-0	7-3	12-2	23-0-5
$I^{\beta} \mathrm{a}$	13	477	3-0-0	7-4	11-1	21-0-5
$I \beta^{\text {b }}$	14	16	5-0-3	6-3	7-1	18-0-7

Group 1216 has 6 unique readings with 2 in each chapter. In Chapter 1 there were three readings where manuscripts $1279,1216,184,348$, and 829 agreed together, Of these three readings, two were dropped because they were not read by two-thirds of the total group. But these five manuscripets do belong together.

The Table above also illustrates how a manuscript can remain in a group but lose group characteristics. The three manuscripts 2174, 477 and 16 have the Textus Receptus reading against the rest of the group 7 times in the three chapters.

Group 1216 has only 39 of the 196 readings or approximately 20 percent. The weaker members of the group have only a 10 percent variation. The members of the core of this group can be readily identified in any chapter. A member on the periphery would need the consensus of all the chapters. The weak members that we have are all better witnesses to the group in Chapter 20.

Group 141
Von Soden classifies 26 manuscripts as belonging to the I^{r} group. Of these 26 we have profiles of $\Lambda, 161,262,1187,164,1198,166,1573$, 211, 376,545 and 1205. To these 12 manuscripts we have added 174,230 and 168 because they exhibit an I^{r} (Group Λ) profile. Von Soden describes the I^{r} group as having the weakest infusion of Iota influence of any Iota group. He describes it as 9 percent Kappa and 1 percent Iota. ${ }^{42}$

According to the profiles, Manuscripts 545 and 376 do not fit in Group 1 . They are both basically Kappa manuscripts with small variations. Manuscript 168 was profiled; its text is close to Group 1424 in Chapter 1, and it has a profile in Chapter 10 similar to Gxoup Λ. This is a thirteenth century commentary and was very difficult to read. Manuscript 1198 is on the border of the group and has only one reading to justify its relation to the group. The remaining manuscripts were grouped as shown in Table 18.

This group has only one unique reading and as von Soden intimated, it is very close to the Kappa text. Manuscripts 174 and 230 fit very well
4^{1} Von Soden, op. cit., Vol. I, pp. 1170f. Group Λ is the same as von Soden's Ir.

42 Von Soden, op. cit., Vol. I, p. 1171. The terms 9 percent and 1 percent are used by von Soden. He probatly means 90 percent and 10 percent.
into this group. $\Lambda, 262$ and 1187 agree together twice in their surplus. The surplus of the other manuscripts show no affinity for any other group. Chapter 20 is the best chapter for identifying a Group Λ manuscript because it has one unique reading, and it has the best distinguishing profile of the three chapters.

TABLE 18
gROUY Λ

(1)

| | | |
| :---: | :---: | :---: | :---: |
| 1 | - | |
| | | |

K^{r} Group

Von Soden classified manuscripts on the basis of their apparatus, the form of the $\mu \circ\left\langle\chi \alpha \lambda \iota s\right.$ and text. For the determination of the K^{r} text, he used the three codices $1, \underline{m}$, and \underline{n} of Scrivener's collations. 43 By checking places where all three agreed, he ascertained the K^{r} text. New manuscripts were added by checking agreement with the $\underline{1}$, $\underline{m}, \underline{n}\left(K^{2}\right)$ text. 44 The polxalıs of the K^{r} group is the $\mu-7$ form.

The most striking element of this group is its apparatus. In many earlier gospel manuscripts the lections were marked on the edge or in the text. K^{r} has these marks ($\alpha \rho \chi \eta-\sim \tau \varepsilon \lambda \rho_{S}$) generally in red ink in the text by the hand of the original scribe. The incipits for a lection are generally in red ink, sometimes on the edge and sometimes in the text itself. The K^{r} edition had the peculiar purpose of arranging the gospels for lectionary use without setting the lections out of their continuous text.

Two brief explanatory paragraphs are at the beginning of most K^{r} manuscripts. These paragraphs explain the signs, and allow one to find the correct material for a particular ecclesiastical date. The lectionary lists follow in paragraphs. There is sometimes a second list for the menologion. 45 The marginal apparatus of these manuscripts have numbers which designate particular lections. Mathew has 116, Mark 71, Luke 114, and John 67. This material replaces the Eusebian canons and Ammonian sections for almost all K^{r} manuscripts.

$$
\begin{aligned}
& 431=\text { Gregory } 479, m=\text { Gregory } 201, \text { and } n=\text { Gregory } 480 . \\
& 44 \text { Von Soden, op. cit., Vol. I, p. } 780 . \\
& 45 \text { Ibid., pp. } 758 \mathrm{f} .
\end{aligned}
$$

On the basis of these three elements, von Soden classified 196 of the manuscripts he sampled as K^{r} manuscripts. He places these into eight groups according to the completeness of their apparatus. 46

Von Soden dates the origin of the K^{r} edition in the first part of the twelfth century. There are three K^{r} manuscripts which had been dated in the eleventh century, but at least one of them cannot be eleventh century, according to von Soden, and another is properly dated eleventh or twelfth century. Von Soden doubts that an official edition, as $K^{\mathbf{r}}$ apparently is, would begin with so few manuscripts. Therefore he lists $19 \mathrm{~K}^{\mathrm{r}}$ manuscripts for the twelfth century, 30 manuscripts for the thirteenth (this is $1 / 10$ of the total extant Gospel manuscripts of the thirteenth century), 82 manuscripts for the fourteenth (this is $1 / 3$ of the extant Gospel manuscripts of the fourteenth century), 51 manuscripts for the fifteenth century (this is $1 / 2$ of the total extant Gospel manuscripts for that century), and 14 manuscripts from the sixteenth and later centuries. The growth in percentage of the extant manuscripts indicates how well the new edition was received, and that the K^{r} edition became the dominant text in the later medieval period.

The K^{r} edition does not appear to have penetrated the West. When von Soden wrote his prolegomena, there were few K^{r} manuscripts in the West. There were some in England, but they were cullected from the East. He lists $11 \mathrm{~K}^{\mathrm{r}}$ manuscripts in the West whose place of origin is uncertain. Most K^{r} manuscripts are either at or originated from Athos or Constantinople. Of the 196 examined by von Soden, 7 were from Jerusalem, 7 from Sinai, 8 from

$$
{ }^{46} \text { Ibid., p. } 762 .
$$

Athens, 3 from Patmos, and 2 from Chalki. The rest are distributed around the diocese of Constantinople. So von Soden speculates that K^{r} was edited in Constantinople early in the twelfth century and spread from there. 47

David O. Voss checked von Soden's work on K^{r} by using a list of 68 readings which von Soden defines as K^{r} differences from K^{x}. The table below shows the percentage of agreement between these 68 readings and the various manuscripts.

TABLE 20

2396	2322	479	201	480	241	246	252	66	685
92%	95%	91%	94%	94%	82%	85%	82%	78%	$98 \% 48$

To confirm the results Voss selected 22 variants in the Isaac Gospels (Greg. 2396) which had very little minuscule support. When the other nine manuscripts were checked against these 22 readings; ". . . all but two manuscripts had at least 20 of the 22 variants. Among the non- K^{r} manuscripts, only two or three had more than four of the 22 variants." 49 These readings for the gospels are unique K^{r} readings, i.e., readings found in the K^{x} group and no other group. Voss found one unique reading in Mark 11 from the 100 manuscripts which Lake collated and published for this chapter.

Lake's conclusion concerning K^{r} was, ". . . we cannot at present distinguish anything which can be identified with von Soden's K^{r}, nor do

47 Ibid., pp. 763 f.
48David 0. Voss, "Is von Soden's K^{r} a distinct type of Text?" Journal of Biblical Literature, LVII (1938), p. 313.

49 Ibid., p. 314.
we feel any confidence in his K^{1} text as a really distinct text. "50 In a later article on the ecclesiastical text, Lake recognized both K^{1} and K^{r}, but he says that K^{1} evolved into K^{X} and then into K^{r} by a process of selection based on orthographic preferences and lectionary use. 51 However, the six readings unique to K^{r} manuscripts in Luke are not due to orthographic preferences. Of these six unique readings, three are substitutions, two are omissions and one is a transposition.

In a check-list of the majority lectionary texts, 52 no unique Lukan K^{r} readings have the lectionary text. In Chapter 10 of Luke, the lectionary text contains four of the Chapter 10 test readings. Only one of these four corresponds with one of the five K^{r} readings of Chapter 10 in the profile method. In Chapter 20 the lectionary text has 14 of our profile readings. Only five of these correspond with five of nine K^{r} readings in Chapter 20. But those readings which do correspond"also agree with K^{x} and other groups and are not therefore significant. A later study has shown that the lectionary text agrees very highly with Group 7. Therefore, although K^{r} has all the lectionary equipment, it does not reflect the lectionary text.

50Kirsopp Lake, Robert P. Blake and Silva New, "The Caesarean Text of the Gospe1 of Mark," The Harvard Theological Review, XXI (1928) : p. 341.

51Kirsopp Lake, "The Byzantine Text of the Gospels," La Grange Memorial (Paris: J. Gabalda et Cie, 1940), pp. 251-258.

52The majority Lectionary Text used here and in the discussion of the Group 7 was determined by the majority agreement of 10 selected lectionaries. This work was done for the I.G.N.T.P. by Dr. E. C. Colwell and Irving Alan Sparks. The text is so closely knit that it will be represented in the Apparatus Criticus by a siglum "Lect." This is another point where our research is deeply in debt to the raw material in the files of the I.G.N.T.P. and to those who accumulated this material. An account of the Major Lectionary Text is given in the article, "The International Greek New Testament Project: A Status Report," by E. C. Colwell with I. A. Sparks, Frederik Wisse and Paul R. McReynolds, Journal of Biblical Literature (1968), pp. 188-191.

The Claremont Profile Method was applied to 45 manuscripts of the 196 which von Soden classified as K^{r}. 41 were confirmed as K^{r} for Luke; I was reclassified as K^{x}, and I as M^{b}, and two were not at this time able to be classified, but they were definitely not K^{r} manuscripts. Of the 550 profiles of manuscripts, 61 show a K^{r} text. Of these, 41 were identified as such by von Soden; 9 were identified by von Soden as belonging to the K^{X} group; and 1.1 were not previously classified.
K^{r} has three primary readings in Chapter 1. Number 34 is held in common with all groups except group 13. Number 37 is held in common with five other groups but no other Kappa groups. Number 43 is held in common only with groups 1, 22 and 1216. The average surplus is less than 1 , and 24 manuscripts have no surplus. Number 43 is a crucial reading for this chapter.
K^{r} has five primary readings in Chapter 10 . Number 11 is held in common only with Group 1. Numbers 23, 57 and 60 are held in common with several groups, including K^{1} and K^{x}. Number 63 is held in common on 1 y with groups 13,1216 and $\pi^{a b}$. The average surplus for Chapter 10 is less than .5. Only 11 manuscripts of the $51 \mathrm{~K}^{\mathrm{r}}$ manuscripts have any surplus. Reading 11 is crucial for identification in this chapter, and to a lesser extent, reading number 63.
K^{r} has nine primary readings in Chapter 20. Of these readings, 7 are shared with K^{1} and K^{x}. The other two readings are unique to the K^{r} group and are not read by any other group. Number 52 is the more crucial of the two readings although almost every K^{r} manuscript reads beth numbers 30 and 52. Number 30 is read by a few manuscripts outside the K^{r} group, but so far no manuscript outside the K^{r} group reads number 52.

Number 30 is the omission of a pronoun and therefore more liable to scribal error than the four word transposition which is the variant of number 52 . The average surplus for Chapter 20 is . 5 .

It is of interest to note that of the $17 \mathrm{~K}^{\mathrm{r}}$ group readings, 11 are shared with other Kappa groups, 2 are unique, 1 is shared only with group 1, and 3 have the support of various groups with Group 1216 represented in every case. In reference to the question concerning where K^{r} derived its readings, we must say that they generally reflect the broad Kappa texttype. In our 196 test readings, K^{r} agreed with the Textus Receptus in 179 readings. In 11 other readings, the K^{r} readings agreed with most Kappa groups. This leaves only 6 readings from 3 chapters where the K^{r} text varies significantly from the Kappa text-type, and two of these are unique to K^{r}. The 4 remaining readings as discussed above show no special affinity to any group.

When the surplus of all K^{r} manuscripts was put on a profile sheet, two small sub-groups of K^{r} appeared. Manuscripts 47, 56 and 58 , in addition to the regular $\mathrm{K}^{\mathfrak{r}}$ readings in Chapter 1, read numbers 6 and 36. In Chapter 10, they read 4, 21 and 62 , and two manuscripts miss one primary reading, number 63. In Chapter 20 they read 1, 11, 43 and 44, and miss primary readings 55 and 65 . These are all fifteenth century manuscripts and are related according to Gregory. 53 Gregory says that they are all daughters of 54. All the readings in Manuscript 54 which are not K^{X} readings (with one exception) are read by one of the group.
${ }^{53}$ Caspar Renée Gregory, Textkritik des Neuen Testaments, (Vo1. I Leipzig: J. C. Hinrichs, 1900), pp. 139-142.

Manuscripts 47, 56 and 58 have distinctive K^{r} readings and the general profile of a K^{r} but 54 does not. If 54 is a predecessor of 47,56 and 58 , whoever copied them from 54 changed several readings to a K^{5} text. The other sub-group consists of five manuscripts, numbers 825, 1236, 1323, 1476 and 2496. In Chapter 1 , these five all add readings 9 and 36 with no surplus. In Chapter 10 and 20 the agreements are not as unanimous, but the inter-relationships are in evidence.

The time spread on the K^{r} manuscripts profiled follows:
Century

11th	12th	13th	14 th	15 th	16 th
2	8	9	30	7	3

The K^{r} group originated as a recension early in the twelfth century. It has a text very similar to K^{x}, yet distinguishable. Its unique lectionary apparatus was added to the recension, but the text itseif was not significantly affected by the Majority Lectionary Text. The text gained prominence and pre-eminence by the late fourteenth century.

$$
\text { Group } \pi^{a^{5}}{ }^{54}
$$

The monumental nature of von Soden's work is especially seen in the construction of this group, He cites about 111 manuscripts which he uses to construct the K^{a} group. 55 of these 111, 44 have been profiled.
${ }^{54}$ The term Π^{a} is equivalent to von Soden's K^{a} in Volume I and $I^{k a c}$ in Volume II. The term \mathbb{I}^{b} is equivalent $\because 0$ von Soden's nuance of K^{a} in Volume I and $I^{k b}$ in Volume II. The Lakes refer to the total group as Family π.

55 Von Soden, op. cit., Vol. I, pp. 850 .

The K^{a} text in 40 of these 44 has been confirmed for Luke. 56 Von Soden's discussion of these manuscripts led him to break them into four groups. The first group of 39 manuscripts he describes as the core of the K^{a} group; this is the equivalent of $I^{k a}$ in Volume II. The second group is composed of nine manuscripts which vary from gospel to gospel between K^{a} and K^{x}. Our profiles revealed that of all the groups, the K^{a} and $K \mathbf{x}$ groups were the most likely to interchange text within Luke. The third group contained 29 manuscripts which are described as a nuance of K^{a}; this is the equivalent of I^{kb} in Volume II. The fourth group is made up of 34 manuscripts which is described as K^{a}, weakened by the influence of k^{x}; this is approximately equivalent to $I^{\text {kc }}$ in Volume II. This last group is not valuable for determining the K^{a} group; they are only witnesses for the spread and appearance of the text. 57

The existence of the $\mathrm{K}^{\text {a }}$ group was confirmed by Kirsopp Lake in his study of Mark 11 in the manuscripts ar Sinai, Patmos and Jerusalem. 58 . Silva Lake constructed the K^{a} text for Mark. She says concerning von Soden, ". . . his views have been substantially confirmed by the present investigation, except that, " 59 and she goes on to make the following three exceptions. First, Codex Alexandrinus is not a member of family $I I$. It is
${ }^{56}$ The manuscripts classified by von Soden as I^{k} and unconfirmed in Luke are 38, 796, 1004 and 1009.

57 Von Soden, op: cit., Vol. I, p. 856.
58Kirsopp Lake, "The Ecclesiastical Text," Harvard Theological Review, Vol. XVI (Cambridge: Harvard University Press, 1928), p. 342.
${ }^{59}$ Silva Lake, "Family Pi and the Codex Aiexindrinus," Studies and Documents, Vol. V (London: Christophers, 1936), p. 5.
derived from an ancestor of this family. Second, more accurate collations have changed some readings. Third, the relations between manuscripts can be made more precise.

Jacob Geerlings in his work on Family Pi in Luke contributes a few more manuscripts to the family and rearranges the stemma only slightly. 60 Below is Silva Lake's stemma for Mark. 61

The Claremont Profile Method generally confirms von Soden's conclusions. It established three groups of Pi . Our $I^{\text {a }}$ corresponds to von Soden's $I^{k a}$ and $I^{k c}$ or the core of K^{a}. This is a group with 10 unique readings and a total of 43 readings against the Textus Receptus.

60Jacob Geerlings, "Family Pi in Luke," Studies and Documents, Vol. 22 (Salt Lake City: University of Utah Press, 1962).

61Silva Lake, op. cit., p. 29.

TABLE 22

GROUP π^{a}

Von Soden Classi- fica- tion	Century	Gregory Number		Chapter10	$\underline{20}$	Total
			1			
			8-2	14-0	19-0	41-2
I^{ka}	9		8-2-1	13-0	19-0	40-2-1
I^{ka}	1316	489	8-1-2	14-0	19-0	41-1-2
т ${ }^{\text {ka }}$	11	1219	8-1-1	14-0	19-0	41-1-1
I^{ka}	12	265	8-2-1	13-0	19-0	40-2-1
I^{k}	10	1079	7-1*1	14-0	19-0	40-1-0
none	11/12	2411	$7^{*} 1-4$	13-1	19-3	39-1-8
none	13	2404	7-1-1	13-0	19-0	39-1-1
I^{k}	1263?	1546	6*0-3	12-3	17-4	35-0-10
$I^{k a}$	9	K	6-2-0	11-0	18-2	35-2-2
Ikc	12	280	7-1-0	12-0	16-0	35-1-0
none	10	2324	8-1-1	9-3	18~0	35-1-4
I^{k}	11	114	8-2-2	9-3	17-0	34-2-5
I^{k}	12/13	1561	6-0-4	9-3	18-0	33-0-7
$I^{\text {ka }}$	10/11	1346	5-2-2	10-0	17-0	32-2-2
none	13	2405	4-0-8	10-1	16-2	30-0-11
none	13	2400	6-0-2	9*-4	14-4	29-0-10
I ${ }^{\text {kb }}$	12	270	4-0-1	12-2	13-1	29-0-4
I^{k}	1.1	389	$4^{*} 0-3$	10-2	14-3	28-0-8
I^{k}	13	992	5-0-3	8-2	15-4	28-0-9
$A^{\text {c }}$	11	1313	5-2-1	11-1	11-1	27-2-3

TABLE 22 Continued

Soden						
Classi-						
fica-		Gregory		Chapter		
tion	Century	Number	$\underline{1}$	10	20	Total
$I^{\text {ka }}$	5	A	7-2-3	7-4	11-5	25-2-12
I^{k}	10	1816	6-0-1	7-0	12-1	25-0-2
K^{X}	10	175	5-1-3	6-1	8-2	19-1-6
none	12	2615	3-0-2	3-0	10-0	16-0-2
	*means there is a lacuna in the text.					
Our π^{b} corresponds to von Soden's I^{kb} or the nuance of K^{a}. The						
Π^{b} group is differentiated from the $\Pi^{\text {a }}$ group because it loses the 10						
unique readings for the $\Pi^{\text {a }}$ group and adds four readings, two of which						
belong to the Kappa text. The π^{b} group agrees with the π^{a} group in 22						
readings; 4 of these readings are read only by these two Π groups. So						
Π_{b} is definitely a branch of the $\Pi^{\text {a }}$ group yet quite distinguishable in a						
number of readings.						

TABLE 23
GROUP π^{b}

Von Soden Classi- fica- tion	Century	Gregory Number	$\underline{1}$	Chapter 10	$\underline{20}$	Tota1
			$4-1$	$7-4$	$10-0$	$21-5$
I^{k}	12	1319	$4-1-1$	$6-3-1$	$10-4$	$20-4-6$
I^{k}	13	6	$3-0-1$	$7-4-4$	$10-3$	$20-4-8$
$I^{k b}$	13	726	$4-1-2$	$6-2-1$	$10-3$	$20-3-6$

TABLE 23 Continued

Von						
Soden						
Classi-						
fica-		Gregory				
tion	Century	Number	1	10	20	Total
${ }_{\mathrm{I}} \mathrm{kb}$	12	1200	4-0-2	6-2-2	9-3	19-2-7
$I^{\varphi C}$	10	1223	3-1-2	6-1-3	10-5	19-2-10
I^{k}	13	1113	$3^{*} 1-2$	6-2-1	9-4	18-3-7
I^{k}	11/12	1478	3-1-2	5-2-2	8-4	16-3-8
none	11	2321	2-0-3	5-2-2	7-5	14-2-10
	s there	a lacun	the tex			

As von Soden noted there are also manuscripts which change from a group to K^{x} and vice versa. This was noted in several manuscripts.

TABLE 24
II ${ }^{\mathrm{ab}}$ MIXED WITH K^{X}

Von					
Classi-					
fica-		Gregory			
tion	Century	Number	Chapter 1	Chapter 10	Chapter 20
$\mathrm{Ik}^{\text {c }}$	1140	229	$\pi{ }^{\text {a }}$	$\mathrm{K}^{\mathbf{x}}$	K^{X}
I^{k}	1360	904	$\pi{ }^{\text {a }}$	11.	K^{x}
I^{k}	12	178	$\pi^{\text {a }}$	$\Pi^{\text {a }}$	K^{X}
I^{k}	11	1314	$\Pi \square$?	K^{x}
$\mathrm{I}^{\text {a }}$	13	544	IIa	K^{X}	K^{x}
A^{C}	10	1392	K^{1}	K^{x}	II a
K^{x}	11	158	$\mathrm{K}^{\mathbf{x}}$	K^{X}	IIa
$I^{\varphi b}$	14	182	$\mathrm{K}^{\text {r }}$	$\pi^{\text {a }}$	$\pi \mathrm{a}$

TABLE 24 Continued

TABLE 24 Continued

Von					
fica-		Gregory			
tion	Century	Number	Chapter 1	Chapter 10	Chapter 20
I^{k}	12	1007	mixed	$\pi^{\text {b }}$	II ${ }^{\text {b }}$
I^{kc}	13	473	K^{x}	$\pi^{\text {b }}$	$\pi^{\text {b }}$
I^{k}	12/14	116	$M^{\text {a }}$	$\pi^{\text {b }}$	$M^{\text {a }}$

Von Soden also noted that many K^{a} manuscripts were weakened towards the K^{X} text, and the Claremont Profile Method found many manuscripts with a basically K^{X} text which had a few II group readings. ${ }^{62}$ This was true for many of the manuscripts listed in the table above.

Four manuscripts showed a change between the two II groups.

I^{k}	9	Y	Chap. $1-\Pi^{a}$	$10-\Pi^{b}$	$20-K^{x}$
K	14	393	Π^{a}	Π^{b}	def.
I^{\prime}	12	1355	Π^{b}	Π^{b}	Π^{a}
I^{k}	12	537	Π^{a}	Π^{b}	K^{x}

In the π^{b} gro:p three manuscripts (1478, 1200 and 1318) were listed in the stemma constructed by Lake. They are under the " f " branch along with 1546 which is a $I^{\text {a manuscript in Luke. Geerlings' stemma of }}$ Luke includes only one π^{b} manuscript (1478). Thus the distinctiveness of the Π^{b} group is apparently lost in the numerous branches of these trees.

[^7]

Von Soden groups $53 \mathrm{~K}^{1}$ (Group Ω) manuscripts according to their form of the μ oixalıs. 64 of the 53,18 were available to us. The K^{1} (Group Ω) Group is the oldest form of the Kappa text according to von Soden. He determined the K^{1} text by the agreements of 8 manuscripts ($\Omega, \mathrm{V}, 461,399, \mathrm{~S}, 655$ and 476).

Von Soden constructed his text through a comparison of the three great recensions (Hesychian, Jerusalem and Koine). The Jerusalem (I) text has come to be more closely associated with Caesarea. Most of the Iota groups developed by being influenced by the Koine text, which corrupted the Iota text. $I^{\text {a }}$ is the least corrupted group. I^{r} is the most corrupted group. Von Soden believed that the Lucianic recension was the origin of the Koine text, and that K^{1} was its earliest form. This K^{1} corrupted the Iota text. The K^{1} form spread and developed the $K^{\mathbf{x}}$ text. The K^{r} form was a late church recension.

It is more probable that Group II is the most direct descendant of the Lucianic recension and not K^{1} as von Soden wrote. Codex A is related to Group $\pi, 65$ therefore that type of text was in existence in the fifth century. The earliest evidence of K^{1} is from the eighth century. Kirsopp Lake turns around von Soden's picture of the origin of the Kappa text.

[^8]None of the other mixed texts of von Soden's I group is really dissimilar in type from fam. Pi, though some have a stronger Caesarean element than others. 'Caesarean-Alexandrian' is a formula which covers all of them, the difference being in the evolution which produced the text generally called the 'Byzantine iext,' as it existed in the ninth and following centuries. Von Soden really stood the pyramid on its head; none of these 'mixed' families are texts corrupted by K^{1} or K^{x} but are readings which in the end produced K^{1} and $K^{x} . K^{1}$ and K^{X} each show a certain amount of individual variation, by which they can be identified, --but it is surprisingly little --.. 66

It is this "surprisingly little variation" with which we are presently concerned. The Lakes contend that: K^{1} evolved into K^{x} and then into K^{r} by the process of orthographic selection and influence of the lectionary text. K^{r} has already discussed at this point in the section on K^{r}. The differences between K^{x} and K^{1} in the readings of the three chapters in Luke are in part due to orthographic style. Despite the small differences between K^{1} and K^{x}, the Claremont Profile Method can distinguish them in the three chapters.

The Lakes speculate that K^{1} was produced as a text during the renaissance of calligraphy during the height of the fame of the Monastery of Stoudion in the ninth and tenth centuries. 67 The earliest dated minuscule is 461 (A.D. 835), and it has a K^{1} text, and it was probably produced by a scribe from Stoudion. But this would not account for the eighth century uncial Omega, nor the two other uncials which contain a K^{1} (Group Ω) text. It may be that the Monastery at Stoudion was responsible for the spreading of this text-type, but it existed before Stoudion came to its peak of renown for calligraphy.

66Kirsopp Lake, Memoria1, p. 256.
6^{67} Ibid., p. 255.

In the latest study of these Kappa groups, Champlin constructs the text of Family E. 68 He uses $S, U, V, \Omega, 44$ and 65 as representatives of the K^{1} text. Champlin concludes that K^{1} is a distinct division of the Kappa text. Champlin hesitates to use the term family in referencer to K^{1} and generally refers to it as a stratum in the Kappa text. ${ }^{69}$ The inclusion of U and 422 as representatives of this stratum is a mistake. Manuscript U in Luke has the K^{1} (Group Ω) readings; however, it also has 10 surplus readings which generally agree either with other Kappa groups or with Group 1. Manuscript 422 does not have a Group Ω profile in Luke. It has only one reading that gives a hint of its being K^{1}, and that reading is shared with 7 other groups. Champlin's statistics of agreement are interesting, but when one deals with differences in the Byzantine text, it is disagreements that need t.o be emphasized. U and 422 disagree wi.th S, V and Ω. The blindness of Champlin's method is overcome when one can see in the Claremont Profile Method that the disagreements U has with K^{1}
(Group ת) have relationships with other groups.
As a result of this study, the Group Omega text in Luke split into three small divisions. The first division contains manuscripts 2177, S , 399, $\Omega, 1691$ and 408. All of these are listed in von Soden together as manuscripts having the mu-2 form of the $\mu 0<\chi \alpha \lambda \iota s$. A second division contains 8 manuscripts ($461,1470,1077,123,1556,151,2142$ and 2176). This division corresponds in part to the manuscripts von Soden lists which
${ }^{68}$ Champlin, op. cit., pp. 19-54.
6^{69} Ibid., p. 9. Champlin includes in this K^{1} Stratum the $K^{i k}$ group of von Soden. This group contains manuscripts 98, 219 and 422.

							1		T																					
						I																								
												－	I															1		
							，																							
															－															
								，			－														1	＋		－	！	
																													I	
															－														－	
															－															
												－									－							－－	－	
												7								－						，			－	
																，													1	
																												－		
																		－												
														－				－												
																		－			－－	1								
									－－	－－		－1－						－												
									1			$!1$		－																
	\％											$1-$		－					x									\square		
	\square				8 L			1	－			I		－													－			－
	T				29			1	1					T			x	－									x			
	¢				02			－	－	\square	－1	\square	－	－－		－	x				－	－					\times			
	O	H			85		x	－	\square	＋		$1 \times$	4	－													x			
	t			E7	EI			1	－1				x^{4}											－			－			
	$\stackrel{\sim}{\sim}$		－	902	ZT		0	0	！			P	¢				x				\cdots									
	？	崖		ELO	OT		0	－	－：				x			\times	x										x			
	骨				9 T	－	A	1	，				∞																x	＋
	因				カL	－		1	－	－			¢				x									\star	4			
			－	¢62	Zt	－	1	8	－－				∞				x			，		；					\times			
				010	01	－	\square	－	1				\star	I			x					1		－			x		¢	
				85.	εz		A	1					x	－1			\star							－			安			
				562	71		1	0	\square			－	\times	1			\otimes										4			
		\square	－	LTE	ET		8							\square			\times										\pm			
				で，	T2									－			\times										\otimes			
					ST		A						x				x										8			
	－	1	－	941	12			1					${ }^{x}$				\times										1			
	－			95s	¢							\otimes	∞				\times					1					\pm			
		－	\square		Z		A									－											\pm			
			\cdots	LLO	OT．		a						${ }^{x}$			${ }^{x}$											\pm			
				02t	\dagger T							1	®			\cdots	$\dot{\otimes}$							！			x			
					97\％			1					x				\times										4			
	｜	11			07			¢		－			x				$\stackrel{x}{x}$										4			
				169	97		∞			¢			∞				\times										∞			
					ข		4	x	－	\cdots			\times				\times							！			\triangle			
					6 E		x		－	\cdots			\times			\pm	x										\triangle			
					S		x	x		，x			\triangle				\times										\pm			
				CLI	12					\cdots							\times										¢			
							－	Tno	$0 \times \infty$	－9		－	－	$\xrightarrow[\sim]{0}$		－9\％	$\xrightarrow{\sim}$			जू	네N	$\stackrel{N}{N}$		No	べゥ	NM m		min	mo m	의
		－	，							\％																				
					：					，										I	\square			I			i			

have no $\mu \mathrm{olx} \alpha \lambda \iota s$. A third division contains 17 manuscripts (see Table 26). All three divisions have a similar profile in Chapter 1. In Chapter 10, the first division generally misses the Group Ω readings 3 and 23 and then has reading 9 in Chapter 20. No other Group Ω manuscripts have this reading. In the second division the manuscripts skip reading 23 in Chapter 10 and reading 57 in Chapter 20 but have reading 65 in Chapter 20. The third division is the opposite of division two in that it reads 23 in Chapter 10 and 57 in Chapter 20 and skips 65. The third division does not have a distinguishable profile from K^{X} in Chapter 20 , and only one manuscript in this division was classified by von Soden as K^{1} (Group Ω). Group Ω has all the K^{X} readings except 60 in Chapter 10 . Approximately 15 percent of Group Ω manuscripts will read 60 , but they will almost always have 22 in Chapter 1 and generally 8 and or 52 in Chapter 1, 3 in Chapter 10 and 65 in Chapter 20.

Group K^{X}
The three main Kappa divisions of von Soden are K^{1}, K^{r} and K^{x}. K^{x} refers to the uniform mass which lies between K^{1} and K^{r}. The differences within the K^{X} manuscripts are not as great as the differences between K^{x} and K^{1} or K^{r}. Von Soden leaves the door open to new groups within K^{x} when he says,

Da diese zwischen K^{1} and $K^{\mathbf{r}}$ liegende Grösse bei erneuter Durcharbeitung des Materials also vielleicht noch aufgelöst werden kann, bezeichne ich sie mit $\mathrm{k}^{\mathrm{x}} .70$

The K^{X} codices are arranged by von Soden according to their form of the $\mu 0<\chi \alpha \lambda \iota s$. There are 14 groups with approximately 440 manuscripts.

$$
70 \text { Von Soden, op. cit., Vo1. I, p. } 713 .
$$

The five largest groups are the codices without the polxadıs (51), codices with the mu-5 form (103), codices with the mu-6 form (78+), codices with the mu-7 form (53) and codices where the context of the Holxadus is not extant (41). 71

Von Soden fixed the $K^{\mathbf{X}}$ text by the agreement of 14 manuscripts $(047,478,506,475,657,89,247,59,477,258,504,672,202$ and 705). Of these 14, 10 were available to us. Manuscripts 478, 89, 202, 504 and 672 have a K^{X} text according to their profiles. Manuscripts 047 and 59 are basically K^{X} with some surplus. Manuscript 657 belongs to the Π Group in Chapter 10. Manuscript 477 belongs to the periphery of Group 1216 in Luke. Manuscript 475 has a very wild text. The last three manuscripts $\left(657,477\right.$ and 475) have most of the $K^{\mathbf{X}}$ readings in the three chapters but some surplus which puts them in other groups. Some of the manuscripts identified by von Soden as K^{x} have been falsely identified as such because he used characteristic variations as a short-cut to complete chapter collations in some cases. 72

The K^{X} group remained relatively pure despite its range in geography and time. This is in comparison with the H text. ${ }^{73}$

The K^{x} groupis an offshoot from the K^{1} tradition. There is only one reading (60 in Chapter 10) which K^{X} has and the majority of K^{1} does not have. This reading is an orthographic change. The readings dropped by K^{1} as it changed to K^{x} are of this same type with one exception. These
${ }^{71}$ Ibid., pp. 735-55.
${ }^{72}$ Ibid., p. 775.
${ }^{73}$ Ibid., p. 778.
include a change in a verb twice and a change in the spelling of a proper name. The one exception is in Chapter 1 reading 52 which is the omission of the words ins $\zeta \omega n s$. It is of interest to note here that the only other group which has this reading is the predecessor of $K^{\mathcal{I}}$; i.e., Group ii Because the $K^{\mathbf{x}}$ group came out of the K^{1} group, these groups are difficult to distinguish at times. The following are suggestions for making the differentiation. These suggestions are based on the statistics gathered from $50 \mathrm{~K}^{\mathrm{X}}$ manuscripts and $32 \mathrm{~K}^{1}$ manuscripts. In Chapter 1 a K^{1} manuscript almost always reads 6-22-34 and generally also reads 8 and or 52. In Chapter 1 a K^{x} manuscript aimosi always reads 6 and 34 . Readings 9 and 36 are also read by about 30 percent of the K^{x} manuscripts. A K^{X} manuscript will also have from 1 to 3 surplus readings in Chapter 1. In Chapter 10 a K^{1} manuscript almost always reads $15-18-57$ and generally also reads 3-23-44. In Chapter 10 a $K^{\mathbf{x}}$ manuscript almost always reads 15-18-23-57 and generally also reads 44 and 60 with an average surplus of one reading. In Chapter $20 \mathrm{~K}^{\mathrm{x}}$ and K^{1} manuscripts will almost always read 4-13-19-35-54-55-62 and generally also read 50 and 57. The distinctions in this Chapter are discussed in the section on K^{1}. In opposition to K^{x}, a K^{1} manuscript will have all the $K^{\mathbf{X}}$ readings except 60 in Chapter 10; but it will almost always have reading 22 and generally 8 and or 52 in Chapter 1, reading 3 in Chapter 10 and reading 65 in Chapter 20.

The manuscripts designated K^{X} do have a common core of readings. Their profile is distinctive from all others if applied carefully. So the K^{X} manuscripts do form a group. Their real peculiarity lies in the surplus which they attest. This surplus is more varied and numerous than in other groups. In Kirsopp Lake's work on Mark 11, he found,
. . . 1ictle evidence of close family relationship between manuscripts even in the same library. They have essentially the same text with a large amount of sporadic variation . . . In all probability it is the same as von Soden's $\mathrm{K}^{\mathrm{K}} .74$

It is this sporadic variation which makes the K^{X} group so hard to control. The other peculiar point about the K^{x} manuscripts is in reference to its block-mixture in Group II manuscripts.

The following 10 manuscripts are representative of the KX group.

TABLE 27
GROUP KX

Von Soden						
Classi- fica- tion	Century	Gregory Number	$\underline{1}$	Chapter 10	$\underline{20}$	Total
			2	6	9	19
$K^{\mathbf{x}}$	10	135	2-3	5	8	15-3
K^{X}	992?	1452	2-2	6	9-2	17-4
$K^{\text {X }}$	13	1352	2-2	6	9	17-2
$K^{\text {X }}$	11	8	2-1.	5-1	9	16-2
K^{X}	10	1203	2-3	5-1	7	14-4
kak	10	478	2-3	5	9	16-3
Kak?	10	568	2-2	6	7-2	15-4
kak	10	1225	2-2	5-2	8	15-4
K ${ }^{\text {x }}$	10	1351	2	5-2	8	15-2

Manuscript 1351 is one of five manuscripts (358, 360, 1351, 1110 and 1564) which form a small sub-group of K^{x}. There are probably several other small groups in the K^{X} mass.

74Kirsopp Lake, The Caesarean Text, p. 341.

CHAPTER IV. GROUPS UNCONFIRMED BY THE

CLAREMONT PROFILE METHOD

Group $\mathrm{I}^{\text {a }}$
Von Soden lists 14 manuscripts as belonging to the $I^{\text {a }}$ group. ${ }^{1}$ Two of these 14 were unavailable to us, and one belonged to the group only in Matthew. The remaining 11 ($\mathrm{D}, 8,565,700,28,21,544,1542$, 1654, 79 and 372) do not form a group. When the 11 are placed on a profile sheet, only twice in the three chapters do 9 manuscripts agree, twice in the three chapters 8 manuscripts agree, and 10 times 6 of the manuscripts agree. In every case the common agreements are with the main Kappa readings. These manuscripts do not show an internal consistency. Externally, even if they disagree more in common readings, they would have the same profile as a K^{X} manuscript. However, only two manuscripts (79 and 21) could be classified as $K^{\mathbb{X}}$ because the other manuscripts have so many surplus readings.

This group appears most often in Mark and is the main Caesarean group. There are many manuscripts which demonstrate an unusual text in Mark and then a thoroughly Kappa text in other books. The conclusion of this study is that I^{a} is not a distinguishable group in Luke. It is certainly not a tight group. If it be considered as a group in the text-type sense, then it is a group of $K^{\mathbb{X}}$ manuscripts with much odd
$1_{\text {Von }}$ Soden, op. cit., Vol. I, p. 1276.
surplus. The profiles for $28,372,565$ and 700 are contained in Appendix III.

Group IO

Von Soden identified 11 manuscripts as belonging to this group. ${ }^{2}$ Included in our profiles are 7 of these manuscripts ($U, 213,1321,2145$, 1071, 443 and 1545). The profile for these manuscripts together shows very little internal consistency. The profile also lacks external distinctiveness. Therefore this group can not stand.

Manuscript 443 was reclassified to Group Mb. Manuscript 1545 was reclassified to the K^{X} group. Manuscripts 1321 and 2145 have basically a Kappa text with some odd surplus. Manuscript 213 has 42 of the 196 test readings in the three chapters. This is very high, but the profile is not similar to any group. Manuscript 1071 has 55 readings in the three chapters, and its profile is not similar to any group. Manuscripts 213 and 1071 are very mixed, agreeing with unique readings of several groups. The profiles of these two manuscripts are contained in Appendix III.

Group I^{σ}
Von Soden iaentified 8 manuscripts as belonging to this group. ${ }^{3}$ Included in our profiles are 5 of these (157, 291, 713, 780 and 1012). Below is a chart which lists the amount of readings in each chapter with a comment on the affinities of these readings.

```
\(2_{\text {Von Soden, }}\) op. cit., Vo1. I, p. 1259.
\(3_{\text {Von }}\) Soden, op. cit., Vol. I, p. 1220.
```


Group $I^{\varphi} \mathrm{C}$

The $I^{\varphi C}$ group is defined by von Soden as being further from the central core of $I^{\varphi a}$ (Group 1424) than $I^{\varphi} b$. He lists 13 manuscripts in Volume I. ${ }^{4}$ Codex 1207 is listed in Volume II as belonging to this group. The five manuscripts which are on file are 1223, 1207, 1293, 1010 and 945. According to the profile method, manuscripts 1223 and 1207 belong to the IIb Group. Manuscripts 1293 and 1010 fit well in Group Ω. Manuscript 945 is mixed but is essentialiy a Kappa manuscript. Since all the I^{φ} c manuscripts fit more readily into other groups, and since there was no internal consistency in these five manuscripts, ${ }^{5}$ it was decided that this group could not stand according to the Claremont Profile Method.

[^9]
Patmos Group

This group was first isolated by Lake, Blake and New in their work on the Caesarean Text in Mark. ${ }^{6}$ Silva New continued a study of these 4 manuscripts (1385, 1169, 1173 and 1204) in Mark. 7 Her discussion could be illustrated like this:

Manuscripts 1169 and 1173 were copied independently from 1385. Manuscript 1204 has the family text only in Mark up to Mark 7:9, and in this section it could be another indeperdent copy of 1385 but more probably was a copy of the archetype of 1385.

This group continues its group relation in Luke but not in Chapter 10. Manuscripts 1169 and 1173 agree together in 8 readings of Chapter 1 , but in Chapters 10 and 20 they agree only occasionally, and then it is with the Kappa text. Manuscript 1204 does not agree with 1169 and 1173 in the three chapters sampled in Luke. Manuscript 1204 belongs to the M^{b} group in Chapter 1 and contains Kappa readings in the other two chapters. Manuscript 1385 was not available to be profiled. All these manuscripts were classified by von Soden as K^{X}.
${ }^{6}$ Lake, B1ake and New, op. cit., p. 346.
7Silva New, "A Patmos Family of Gospel Manuscripts," Harvard Theological Review, Vol 25 (Cambridge: Harvard University Press, 1732), pp. 85-92.

CHAPTER V. GENERAL CONCLUSIONS

The Claremont Profile Method and the exposition of groups in Chapter III contribute to three vital areas in the field of textual criticism and point up one of the major problems with which the text critic must deal. These three areas are the selection of minuscule manuscripts for a comprehensive critical apparatus, group studies, and the history of the manuscript tradition. On the other hand, in dealing with the problem of mixture we see a limitation in this method.

International Greek New Testament Project

The major contribution of my study has been to provide a means of selecting representative manuscripts which can be used in the critical apparatus which the International Greek New Testament Project is in the process of formulating. Prior to the implementation of this Profile Method, there were 163 completely collated minuscules in the Master File of the Project. Some of these were put in the Master File because they were representatives of known groups. Many were incluled because there was no satisfactory means of determining whether or not a group was adequately represented. Because there was no way to determine adequate representation, it had been thought that at least 300 minuscules should be included in the critical apparatus. These 300 would probably then cover all groups. The Claremont Profile Method assures the Project of being able to represent adequately the known groups of minuscules with 100 manuscripts.

The Profile Method has also identified manuscripts which are substantially deviant from the Textus Receptus and yet not classifiable in terms of the presently known groups as well as manuscripts which have a mixture of groups within one manuscript. These kinds of manuscripts should be included in a critical apparatus, and they can now be identified and included. Thirty such manuscripts have been located. Because the text critic has always been interested in deviant manuscripts, 15 of the 30 manuscripts in question had already been identified and used in sritical apparatuses. If the 1100 Lukan manuscripts not covered by this study were sampled, the Project might have to include up to 60 more manuscripts which would have either a substantially deviant text from the Textus Receptus or a mixed text.

In terms of the Project then, the Claremont Profile Method can assure a critical apparatus with adequate representation of groups and a substantial number of deviant manuscripts by adding 30 manuscripts, 15 of which represent several groups, and the remainder represent some mixed texts, even after eliminating 63 manuscripts currently in the Master File.

This dissertation contains all the information necessary for one to classify any Lukan manuscript. The numbered profile readings are in Appendix I. The manuscript is sampled by shecking it against these readings. A list of the numbered readings with which the manuscript agrees is its profile. That manuscript's profile is then compared with the Group Profile charts contained in Appendix IT. When a tentative classification is made, ene then turns to the Group description and verifies his classification of the manuscript.

The Claremont Profile Method provides a valid sampling which can be used on all the minuscule manuscripts available. When a manuscript is sampled, it is automatically classified into a group or identified as a deviant or mixed text. Because we have here established the profiles of 14 groups of manuscripts in Luke, and because of the short time required for making the profile of a single manuscript, the remainder of the minuscule manuscripts of Luke could be classified by one man working for about 20 weeks. The 550 manuscripts profiled in this dissertation include all manuscripts available to the Project. The remainder are not easily available except in one collection of microfilm at Münster, Germany. But our study demonstrates that the evidence of the minuscules could be made available to the text critic.

The I.G.N.T.P. will be aided in future work on other sections of the New Testament because this dissertation provides an example and gives suggestions for the construction of other profiles. To make a set of profiles for the Gospel of John, which will be treated next by the I.G.N.T.P., one might first select approximately 100 manuscripts, which should be the core representatives of groups as formulated in Luke. These manuscripts might be fully collated in three widely separated chapters. It has been suggested by Dr. E. C. Colwell that one way to choose the chapters might be to find out which chapters best distinguish between the least distinguishable groups as found in this study on Luke. To locate such chapters, one would need complete collations of John for the main representatives of Groups Ω, K^{x} and 7. If this suggestion were followed and proved to be effective, it would help to create a more efficient instrument to distinguish these closely-knit groups.

In Luke the only distinguishing chapter for Group Ω is Chapter 1 , and for Group 7 it is Chapter 20. The other two chapters provide no decisive data on these two groups. The selection of readings from these collations should then be put into profiles, and the readings and profiles should be tested on as many manuscripts as possible so that if a measure of correction is needed, it will be evident from the additional evidence. Group Studies

The contribution of this study to group studies must be seen in relation to von Soden's work. When von Soden began his work, there were two known groups, 1 and 13. Von Soden formulated the rest of the known minuscule groups, with the exception of the Patmos Group discovered by Silva Lake. All of our work on groups began with his groups. The Claremont Profile Method confirms several of von Soden's groups of manuscripts, including some not previously studied in detail by anyone other than von Soden. Groups $1,13, \Pi^{\mathrm{ab}}, \mathrm{M}^{\mathrm{a}}, \Lambda, 1216$ and 1424 were confirmed. Of these, $\mathrm{M}^{\mathrm{a}}, \Lambda$, and 1216 had not been previously studied in Luke. Groups 22, $\Omega, \mathrm{K}^{\mathrm{X}}, \mathrm{K}^{\mathrm{x}}$ and 7 were rearranged. Group M^{b} was discovered as a result of the research in this method. Several small groups identified as groups by previous studies could not be considered as groups when tested by the Claremont Profile Method: $I^{\varphi C}, I^{a}, I^{0}, I^{\sigma}$ and the Patmos Group.

Von Soden's work not only gave us groups to work with, but his monumental volumes gave us lists of unique readings of groups, distinguishing readings between groups, and much descriptive material about groups. The inaccuracy of von Soden's collations and part of his textual theory has cast such a shaủow over his work that the useful information has
often been overlooked. One who begins a study of any of von Soden's groups and fails to use his information will be seriously handicapped.

As a result of classifying new manuscripts and re-classifying others, every group except 13,1424 and 1216 received new members. And as a result of this study, an accurate classification has been made of 550 manuscripts of Luke. This is approximately one-third of the total extant manuscripts of Luke.

Manuscript Tradition

The information supplied by the Claremont Profile Method is helpful in the construction of the history of manuscript tradition. For example, Codex A, a fifth-century uncial, is related to the Π Group. Previous scholars have not always held this opinion; but we have come to this conclusion since the Claremont Profile Method makes it clear that the unique readings of the II Group and a large amount of the other readings that make up the $I I$ Group are contained by Codex A. It is through this same process of comparing unique readings and group readings according to the Profile Method chat we can conclude that Group Ω, which existed as a text prior to the K^{X} Group, appears to have been derived from the I Group. K^{X} was derived from Group Ω or a common ancestor. This is easily seen because all K^{X} readings are also read by the Ω Group with one exception.

The Claremont Profile Method can also identify some manuscripts with box-car mixture. In our work on the groups, we found many manuscripts which demonstrated box-car mixture between K^{x} and π^{a} or π^{b}. It is my conclusion, through a comparison of readings, that Group Π^{b} was derived from Π^{a} through a preference for readings which have come to
be known as Kappa readings. The K^{X} text was derived from the Ω Group and Π^{b}, again by a preference for readings which have come to be known as Kappa readings.

By including parts of previous constructions correlated with conclusions deduced from material made available by the Claremont Profile Method as discussed in Chapter III, one might reconstruct the manuscript tradition for these groups in the following way. Group Π^{a} originated at least as early as the fourth century, probably with Lucian. Group π^{b} originated probably in the eighth century. Group Ω originated alsu in the eighth century, being more strongly influenced by the forces that produced Π^{b}. The K^{x} text was produced in the ninth century just when the minuscule script was being applied to the copying of the Scriptures. This minuscule script was small and fast, thus many more copies of the Scriptures were made. The K^{X} text predominated in the manuscripts of the next four centuries. The K^{r} text was edited from $K^{\mathbb{X}}$ manuscripts so that the lections could be easily found in a continuous text manuscript. The K^{r} text was produced early in the twelfth century and became the dominant text in the late fourteenth century.

Mixture

A major problem pointed up by this study concerns mixture. Box-car mixture occurs when a scribe copies from one exemplar for a time and then changes to another which contains a different text. The Claremont Profile Method can often detect this kind of mixture because it uses widely separated chapters. On the other hand, several manu-
scripts demonstrate a different kind of mixture: they have the unique readings of more than one group. How can we account for mixture of this type? One possible answer lies in the scribe's habit of correcting his work. He may correct his exemplar with the basic text of another group. Mixture of this type would be spread throughout the book and not in blocks as with the box-car type. The Claremont Profile Method can detect also this latter type of mixture, but in neither case can it determine how the mixture occurs.

Another question concerning mixture arises from the fact that some groups show that they have been derived from other groups through a process of selection of certain readings. How do these manuscripts gradually mix from one group to another and eventually form a new group? Mixture is a fact and can be seen clearly in the profiles. The real problem is to explain the mixture. Again the Profile Method cannot do this. A thorough study of the nature of the differences of the readings attested by these groups should help to determine the forces that made the texts change. Orthographical changes were certainly one of these forces for change. A careful scrutiny of the history of the periods concerned should also add some information. This would be especially helpful in regard to the history of the language. Though the Claremont Profile Method is limited in this respect, it does recognize mixture, describes it in part and sets up the problem for further investigation.

BIBLIOGRAPHY

Books

Aland, Kurt. Kurzgefasste Liste der griechischen Handschriften des neuen T'estaments. ("Arbeiten zur neutestamentlichen Textforschung," Bd. I.) Berlin: Walter de Gruyter \& Co., 1962.

Champlin, Russell. Family E and its Allies. ("Studies and Documents," XXVII.) Salt Lake City: University of Utah Press, 1966.

Colwe11, Ernest Cadman. The Four Gospels of Karahissar. Vol. I: History and Text. Chicago: The University of Chicago Press, 1936.

Colwell, Ernest Cadman and Tune, Ernest W. "The Quantitative Relationship between Manuscript Text-Types." Biblical and Patristic Studies in Memory of Robert Pierce Casey. Edited by J. N. Birdsall and R. W. Thomson. Freiburg: Herder Verlag, 1963.

Ferrar, William Hugh. Four Important Manuscripts of the Gospels. Edited by T. K. Abbott. Dublin: Hodges, Foster and Figgis, 1877.

Geerlings, Jacob. Family 13 (The Ferrar Group) The Text According to Luke. ("Studies and Documents," XX.) Salt Lake City: University of Utah Press, 1961. - Fami.ly Pi in Luke. ("Studies and Documents," XXII.) Salt Lake City: University of Utah Press, 1962.

Gregory, Caspar Renée. Textkritik des Neuen Testaments. Vol. I. Leipzig: J. C. Hinrichs, 1900.

Lake, Kirsopp. Codex 1 of the Gospels and its Allies. ("Text and Studies," VII, No. 3.) Cambridge: The University Press, 1902. . "The Byzantine Text of the Gospels." Memorial Lagrange. Paris: J. Gabalda et Cie., 1940.

Lake, Kirsopp and Silva. Family 13 (The Ferrar Group); the Text According to Mark. ("Studies and Documents," XI.) Philadelphia: University of Pennsylvania Press, 1941.

Lake, Silva. Family Pi and the Codex Alexandrinus; the Text According to Mark. ("Studies and Documents," V.) London: Christophers, 1936.

Legg, S. C. E. Novum Testamentum Graece Secundum Matthaeum. Oxford: Clarendon Press, 1940.

Schubert, Paul. "The Text of the Markan Week-day Lections and von Soden's I^{φ} Text," Studies in the Lectionary Text. Edited by E.C. Colwell and D. W. Riddle. Chicago: University of Chicago Press, 1933.

Streeter, Burnett Hillman. The Four Gospels: A Study of Origins. New York: MacMillan, 1925.

Tischendorf, Constantinus. Novum Testamentum Graece. Vo1. I. Lipsiae: Giesecke \& Devrient, 1869.

Von Soden, Hermann, Freiherr. Die Schriften des Neuen Testaments: In ihrer altesten erreichbaren Textgestalt hergestellt auf Grund ihrer Textgeschichte. II Teilen, IV Abteilungen. Göttingen: Vandenhoeck und Ruprecht, 1911.

Articles and Periodicals

Colwe11, Ernest Cadman. "The Significance of Grouping New Testament Manuscripts," New Testament Studies, IV (1958), pp. 73-92.

Colwell, Ernest Cadman, with Sparks, Irving A., Wisse, Frederik, and McReynolds, Paul R. "The International Greek New Testament Project: A Status Report," Journal of Biblical Literature, LXXXVII (1968), pp. 187-97.

Hoskier, H.C. "Von Soden's Text of the New Testament," Journal of Theological Studies, XV (1914), pp. 307-26.

Lake Kirsopp. "The Ecclesiastical Text," Harvard Theological Review, XXI (1928), pp. 338-57.

Lake, Kirsopp, Blake, Robert P., and New, Silva. "The Caesarean Text of the Gospel of Mark," Harvard Theological Review, XXI, No. 4 (1928), pp. 207-404.

New, Silva. "A Patmos Family of Gospel Manuscripts," Harvard Theological Review, XXV (1932), pp. 85-92.

Voss, David Ole. "Is Von Snden's K^{r} a distinct type of Text?" Journal of Biblical Literature, LVII (1938), pp. 311-18.

APPENDIXES

APPENDIX I. TEST READINGS FOR LUKE

24. ıסovoa] OM. 1216

26. Qutou] OM. $22 \quad 1424 \quad 1216$

31. $\delta \varepsilon$] OM. 1424
 M $\alpha \rho \iota \alpha \varsigma n \in \lambda \iota \sigma \alpha \beta \varepsilon \tau \quad 131424$
33. $\alpha v \varepsilon \varphi \omega \nu \cap \sigma \varepsilon$] $\alpha v \in \beta$ опо 131424
34. $\varepsilon \nu \alpha \gamma \alpha \lambda \lambda \iota \alpha \sigma \varepsilon \iota$ то $\beta \rho \varepsilon \varphi \rho S$] то $\beta \rho \varepsilon \varphi \circ S \varepsilon \nu \alpha \gamma \alpha \lambda \lambda \iota \alpha \sigma \varepsilon \iota$ 22 II ${ }^{\text {ab }} \quad$ Mab $\begin{array}{lllllll}1424 & 1216 & \Lambda & \mathrm{Kr} & \Omega & K^{x} & 7\end{array}$
35. $\varepsilon \sigma \tau \alpha \iota]+\eta 13$

37. Eレs тov aluva] ews alwvos $1311 \mathrm{Ma}^{1424} 1216 \mathrm{Kr}$
38. Tn$]$ tns 13
39. oर $\delta 0 n \eta \mu \varepsilon \rho \alpha$] $n \mu \varepsilon \rho \alpha$ $\tau \eta$ oү $\delta o n 13$
40. ot] OM. 1
41. Ev in oư̧revela] ex tns oưүevelas π^{a}
42. Qutov] auto 13

44. Kal єүعveтo] eүєveto $\delta \varepsilon \quad \Pi^{\text {a }}$
45. $\pi \alpha \nu \tau \alpha$] OM. 1424
46. बutou] aut 13
47. $\pi \rho о \varepsilon \varphi \eta \tau \varepsilon \cup \sigma \varepsilon]$ епро甲птєибє 13

69 48. $\tau \omega$] OM. 13

Luke 10:

1. $\delta v o \mathrm{~J}+\delta v o \quad 13 \pi^{\mathrm{ab}}$
2. autou] eautou 1

3. E E $E \gamma \varepsilon \nu$] $\varepsilon \iota \pi \varepsilon \nu$ 1
4. ouv] $\delta \varepsilon \quad 131$
5. $o \pi \omega s]+\alpha \nu \pi a b$
6. apvas] $\pi \rho o \beta \alpha \tau \alpha \quad M^{a b}$
7. $\left.\mu \eta^{2}\right]+\tau \varepsilon \quad \mathrm{Ma}$
8. $\mu \eta \delta \varepsilon$] $\mu \eta \quad 1 \mathrm{~K}^{\mathrm{r}}$
9. $\mu \eta \delta \varepsilon$] $\mu \eta \tau \varepsilon \quad 13 \quad \mathrm{M}^{a}$

10. Eıpпun] $+\varepsilon \nu 13$
11. $\mu \varepsilon \nu]$ OM. $131 \pi^{a b} M^{a b} 14241216 \Lambda \Omega K^{\text {: }} 7$
12. $\varepsilon \varphi \quad \pi \rho o s \quad 131424$
13. olxıas] olxıa) 13

21．ทนเข ］טนぃン 13
22．UんNV ］+ ELS tous $\pi 0 \delta \alpha S 122 \pi a b 1424$
23．$\delta \varepsilon \quad$ J OM． $13 \quad \Pi^{a b} \Lambda K^{r} \quad \Omega K^{x} 7$

25．Bクヲの \quad ．
26 eүモvovto ］eүعuniñaน 131424
27．$\alpha \cup \varepsilon ห \tau о \tau \varepsilon \rho о \nu ~ \varepsilon \sigma \tau \alpha \iota ~ \varepsilon \nu \tau \eta ~ ห \rho \iota \sigma \varepsilon \iota] ~ \varepsilon \nu ~ \tau \eta ~ ห \rho \iota \sigma \varepsilon \iota ~$ $\alpha \cup \varepsilon ห \tau о \tau \varepsilon \rho \circ \vee \varepsilon \sigma \tau \alpha ル 1$

29．$\cup \psi \omega \vartheta \varepsilon \iota \sigma \alpha$ ］$\cup \psi \omega \vartheta ิ \varepsilon \iota \sigma \eta 22$
30．α ．

33．$\varepsilon \beta \delta$ оипноขт $]+\mu \alpha \vartheta \eta \tau \alpha \iota ~ 1216 \Lambda$
34．$\cup \pi о \tau \alpha \sigma \sigma \varepsilon \tau \alpha \iota ~ \eta \mu \iota \nu$ ］$\eta \mu \iota \nu$ итот $\alpha \sigma \sigma \varepsilon \tau \alpha \iota 1$
35．$\alpha u \tau \eta$ ］$+\delta \varepsilon M^{a} 1216 \Lambda$

38．$\pi \alpha \rho \varepsilon \delta \circ \vartheta \uparrow \eta$ ］$\pi \alpha \rho \alpha \delta \varepsilon \delta о \tau \alpha \iota \quad \Pi^{a}$

40．$\varepsilon \iota \pi \varepsilon$ ］＋बutols 1
41．$\gamma \alpha \rho] \quad \delta \varepsilon \quad M^{a}$
42．$\delta \varepsilon$ ］+ inoous 131424
43．autw $]+$ iñous $\mathrm{Ma}^{\text {a }}$


```
30 45. \tauu\gamma\chi\alphavov\tau\alpha ] 0M. 1 22
32 46. revourvos ] OM. 1
32 47. \varepsilon\lambda\vartheta\omega\nu ] OM. па
32 48. \iota\delta\omega\nu ] + \alphau\tau0\nu пab 1424
33 49. au\tauov 2 ] OM. 1
34 50. \alphautov 2 ] OM. 1
35 51. \varepsilon\xi\varepsilon\lambda\vartheta\vartheta\omega\nu ] OM. 1 1424
35 52. \alphau\tau\omega ] 0M. 1
35 53. \tau\iota ] + \delta паa
35 54. \varepsilon\gamma\omega ] OM. 1 1424
35 55. \mu\varepsilon ] \muo\iota 1
36 56. ouv ] OM. 1
```

Luke 20:
1
1
 apxしEpeしs 13

14 29. เva $n \mu \omega \nu$ rєขntal] иаь пишข єоть 1
30. autov] OM. K
31. toutous] exelvous 1
32. $\varepsilon \pi$] $\varepsilon レ 5$ 1216Λ

34. $\tau \alpha s$ रeเpas] $\tau \eta \nu \chi \varepsilon \iota \rho \alpha \Pi^{\text {a }}$

36. Tov $\lambda \alpha 0 \mathrm{~V}]$ tov oxiov 22
37. $\tau \eta \nu \pi \alpha \rho \alpha \beta \circ \lambda \eta \nu \tau \alpha \cup \tau \eta \nu \varepsilon \iota \pi \varepsilon$] $\varepsilon!\pi \varepsilon \pi \alpha \rho \alpha \beta o \lambda \eta \nu \tau \alpha \cup \tau r_{i} \nu 13$
38. nucv] nuas 13
39. Yopov] yopous 1216Λ
40. Souvar] $\delta \iota$ bovar m^{a}
41. T८ $\mu \varepsilon \pi \varepsilon\llcorner\rho \alpha \zeta \varepsilon \tau \varepsilon$] $0 M$. 1
42. $\varepsilon \pi \iota \delta \varepsilon \iota \xi \alpha \tau \varepsilon] \quad \delta \varepsilon \iota \xi \alpha \tau \varepsilon \quad 13 M^{a b} 7$

44. $\delta \varepsilon$] OM. 1
45. Qutols] $\pi \rho o s$ autous 131
46. A
47. Kaloapos] $+\tau \omega 13$
48. avtideroutes] $\lambda \varepsilon$.

50. Mwons] $\mu \omega u \sigma n s \quad 13 \pi^{\text {a }} \mathrm{M}^{\mathrm{a}} 1424 \quad 1216 \quad \Omega \quad \mathrm{Kx}$
51. $\alpha \pi 0 \vartheta \alpha \cup \eta$] $\eta \quad 11216$

53. noov J + $\pi \alpha \rho$ nuเv M^{a}

31 54．$\omega \sigma \alpha u \tau \omega s]+\omega \sigma \alpha u \tau \omega s \quad M^{b} \quad 1424 \quad 1216 \quad \Lambda \quad \Omega \quad K^{2 x} \quad 7$

55．на，${ }^{3}$ ］OM． $1424 \quad 1216 \quad \Lambda K^{r} \quad \Omega \quad K^{x} 7$
56．Kal amevavov ］OM． 1
57．$\delta \varepsilon \quad$ ］OM．$\quad 13 \quad \Lambda \quad \Omega \quad K \times \quad 7$
58．$\pi \alpha \cup \tau \omega \nu$ ］OM． 1
59．$O \cup \nu \alpha \nu \alpha \sigma \tau \alpha \sigma \varepsilon \iota] \quad \alpha \nu \alpha \sigma \tau \alpha \sigma \varepsilon \iota$ ouv 1
60．Yしvetal ］eठтal 122 Ma 1424

 1424 ＾K ${ }^{\mathrm{r}}$ ת KX 7

63．$\varepsilon \tau \iota$ ］OM． 1
64．Elol ${ }^{2}$ ］OM．Π ab 1
65．Mwons ］μ wuons 22 II ab $\begin{array}{llllllll}1424 & 1216 & \mathrm{~K} & 7\end{array}$
E6．eभnuvoev ］equnpovevoev 1
67．$\varepsilon \iota \pi \alpha S$ ］$\lambda \varepsilon \gamma \varepsilon \iota S ~ 1$
68．$\varepsilon \pi \varepsilon \rho \omega \tau \alpha \nu$ ］$\varepsilon \pi \varepsilon \rho \omega \tau \eta \sigma \alpha \iota 1$ Ma 7
69．ou
70．入eyova $]+\tau \downarrow v e s ~ \Pi a b$ ma
 र口ıनtos vios $\delta \bar{\alpha} \delta$ eबtıv 13

72．Kal autors ］autos yap 1
73．$\beta\llcorner\beta \lambda \omega]+\tau \omega \nu \quad 13 \mathrm{Mab}^{\mathrm{ab}}$
74．Kuplov autov $]$ autov ruplov $\pi^{\text {a }} m^{\text {ab }}$
75．vios autou $]$ autou ulos $1 \pi^{\text {a }}$

78．$\pi \rho \circ \sigma \varepsilon \cup \chi \circ \nu \tau \alpha L] \pi \rho \circ \sigma \varepsilon \cup \chi \circ \mu \varepsilon \nu O L ~ 13$

-	-	,	\square	+
	-1			+
+	-1-1			
	-			-
-				,
				-
				-

APPENDTX IV

Gregory Number	Century	Von Soden Classification	Claremont	Profile Classification Chapter	
			1	10	20
1	12	$I^{\text {ra }}$	1	1	1
2	12	K^{x}	$\mathrm{K}^{\mathrm{x}}+$	K^{x}	K^{x}
4	13	I^{\prime}	mixed	$\mathrm{K}^{\mathrm{x}}+$	$\mathrm{K}^{\mathrm{X}}+$
5	14	A^{k}	mixed	mixed	mixed
6	13	I^{k}	$M^{\text {b }}$	$\pi \mathrm{mb}$	$\pi{ }^{\text {b }}$
7	12	$I^{\varphi ¢}$	7	7	7
ชิ	11	$K^{\text {x }}$	K^{x}	K^{x}	K^{x}
9	1167	$I^{\varphi}{ }^{\text {b }}$	Φ	Φ	Φ
11	12	$\mathrm{K}^{\text {ak }}$	$\pi^{\text {b }}$	K^{X}	K^{X}
13	13	Itc	13	13	13
16	14	$I^{\beta b}$	1216	1216	1216
21	12	$\mathrm{I}^{\text {a }}$	$K^{\text {x }}$	$K^{\text {X }}$	$K^{\text {x }}$
22	12	$I^{\text {qb }}$	22	22	22
27	10	$I^{\Phi} \mathrm{r}$	$M^{\text {a }}$	$M^{\text {a }}$	$M^{\text {a }}$
28	11	$\mathrm{I}^{\text {a }}$	mixed	K^{X}	K^{x}
33	9	H	H	H	H
38	13	I^{k}	K^{x}	K^{x}	$\mathrm{K}^{\mathrm{X}}+$
47	15	K^{x}	Φ	$\mathrm{K}^{\text {r }}$	K^{x}
54	1338	$\mathrm{K}^{\mathbf{x}}$	Φ	Φ	Φ

56	15	K^{X}	$\mathrm{K}^{\text {r }}+$	K^{r}	$\mathrm{K}^{\mathrm{r}}+$
58	15	$K^{\text {x }}$	$\mathrm{K}^{\mathrm{r}}+$	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\mathrm{r}}+$
59	13	K^{x}	¢	K^{x}	K^{x}
66	14	K ${ }^{\text {r }}$	Kr	K^{r}	Kr
69	15	$I^{l b}$	13	13	13
71	12	$\underline{I P r}$	Ma	$M^{\text {a }}$	$M^{\text {a }}$
72	11	I^{k}	$\pi^{\text {a }}$	K^{x}	K^{x}
79	15	$\mathrm{I}^{\text {a }}$	K^{x}	$\mathrm{K}^{\mathrm{x}}+\pi$	$\mathrm{K}^{\mathrm{x}}+\mathrm{If}$
83	11	K^{r}	Kr	K^{r}	$\mathrm{K}^{\text {r }}$
89	1006	K ${ }^{\text {x }}$	K^{x}	K^{X}	K^{x}
114	11	I^{k}	$\pi^{\text {a }}$	$\pi{ }^{\text {a }}$	$\pi^{\text {a }}$
115	10	$I^{\varphi b}$	Φ	Φ	Φ
116	12	I^{k}	Ma	$\pi^{\text {b }}$	mixed
118	13	$\mathrm{I}^{\square b}$	1	1	1
120	12	I^{β}	K^{x}	K^{X}	K^{X}
123	11	K^{x}	Ω	Ω	Ω
124	11	$I^{\text {b }}$	13	13	13
126	11	K^{X}	K^{X}	K^{x}	$K^{\mathbf{x}}$
127	11	A^{C}	$\mathrm{Ma}^{\text {a }}$	$\mathrm{Ma}^{\text {a }}$	$\mathrm{K}^{\mathrm{x}}+$
128	13	K^{r}	Kr	K^{r}	Kr
129	12	$\mathrm{A}^{\text {c }}$	K^{\times}		
131	14	In	1	1	1
132	12	K^{x}	$\mathrm{ma}^{\text {a }}$	$M^{\text {a }}$	$K^{X_{4}}$
133	11	K^{X}	$\mathrm{Ma}^{\text {a }}$	$\pi^{\text {b }}$	$\mathrm{I}^{\text {b }}$
134	12	K ${ }^{\text {x }}$	Ω	Ω	Ω
135	10	K^{x}	K^{x}	K^{X}	$K^{\text {x }}$
137	11	$A^{\text {c }}$	Ω	$\mathrm{K}^{\text {x }}$	$K^{x}+\pi$

138	12	$\mathrm{A}^{\text {c }}$	Φ		
139	12	$A^{\text {c }}$	mixed		
140	12	K^{x}	K^{x}		
141	13	$\mathrm{K}^{\text {r }}$			K ${ }^{\text {r }}$
143	11	$A^{\text {c }}$	Ω	K	K
144	10	$K^{\text {x }}$	Ω	Ω	K
145	11	$K^{\text {x }}$	$\pi{ }^{\text {a }}$	$\mathrm{m}^{\text {a }}$	If
147	13	K^{r}			$\mathrm{K}^{\mathbf{r}}$
148	11	K^{X}	K^{x}	K^{x}	$K^{\text {x }}$
149	15	K^{x}	K^{X}		
150	11	K^{x}	K^{x}	K^{X}	$\mathrm{K}^{\mathrm{X}}+$
151	1.0	A^{C}	Ω	Ω	Ω
152	13	I^{β}	1216	1216	1216
153	14	$I^{\varphi b}$	Φ	$\mathrm{K}^{\mathrm{X}_{+}}$	K^{X}
155	14	K^{r}			$\mathrm{K}^{\text {r }}$
157	12	$\mathrm{I}^{\text {a }}$	K^{x}	wild	wild
158	11	K^{x}	K^{x}	K^{x}	$\pi{ }^{\text {a }}$
159	1121?	K^{X}	$M^{\text {a }}$	$M^{\text {a }}$	$M^{\text {a }}$
160	1123	$\mathrm{I}^{\varphi c}$	8	Ω	Ω
161	10	$\mathrm{I}^{\text {r }}$	Λ	Λ	Λ
162	1153	I	Φ	$\mathrm{K}^{\mathrm{x}}+$	K^{x}
164	1039	I^{φ} or $\mathrm{I}^{\text {r }}$	A	Λ	Λ
166	13	$\mathrm{I}^{\text {r }}$		Λ	Λ
167	13	$\mathrm{K}^{\text {r }}$			$\mathrm{K}^{\text {r }}$
168	13	none	\wedge	Λ	
173	12	K^{x}	Φ		
174	1052	$I^{\text {lb }}$	\wedge	Λ	A

175	10	$K^{\text {x }}$	$\pi^{\text {a }}$	If	IT
178	12	I^{k}	$m^{\text {a }}$	$m^{\text {a }}$	K^{x}
179	12	$I \varphi^{\text {b }}$	Φ	Φ	$\$$
182	14	$I \varphi^{\text {b }}$	K^{r}	$\mathbb{m}^{\text {a }}$	$\pi{ }^{\text {a }}$
184	13	I^{β}	1216	1216	1216
185	14	$I^{\varphi}{ }^{\text {b }}$	Φ	Φ	Φ
187	12	$I \varphi^{\text {b }}$	$\mathrm{K}^{\mathrm{x}}+$	$\mathrm{K}^{\mathrm{x}}+$	$\mathrm{K}^{\mathrm{x}}+$
201	1357	K^{r}	$K^{\text {r }}$	K^{r}	$\mathrm{K}^{\text {r }}$
202	12	K^{\times}	$\mathrm{K}^{\mathbf{x}}$	$\mathrm{K}^{\text {x }}$	K^{x}
205	15	In	1	1	1
209	14	$\mathrm{I}^{\text {nb }}$	1	1	1
211	12	$\mathrm{I}^{\text {r }}$		Λ	\wedge
213	11	Io	wi.1d	wild	wild
214	14	$\mathrm{K}^{\text {x }}$	$\mathrm{K}^{\text {r }}$	K^{x}	K^{x}
217	12	I^{β}	1216	1216	1216
226	12	$K^{\text {X }}$	K^{X}	$K^{\text {x }}$	$K^{\text {x }}$
227	13	K^{X}	$\mathrm{K}^{\text {x }}$	K^{X}	K^{x}
229	1140	I^{kc}	$\Pi^{\text {a }}$	K^{x}	$\mathrm{K}^{\mathrm{x}}+\ldots$
230	1013	Itc	Λ	\wedge	Λ
231	12	K^{x}	K^{x}	K^{x}	$\mathrm{K}^{\text {x }}$
232	1302	I^{β}	K^{x}	$K^{\text {x }}$	K^{x}
262	10	$\mathrm{I}^{\text {r }}$	Λ	Λ	\wedge
265	12	$I^{\text {ka }}$	$\Pi^{\text {a }}$	$I T^{\text {a }}$	$\pi{ }^{\text {a }}$
267	12	$I \varphi^{\text {b }}$	7	7	7
270	12	I^{kb}	$\mathbb{H}^{\text {a }}$	$\pi^{\text {a }}$	$\pi^{\text {a }}$
273	13	I'	Φ	K^{X}	K^{X}
280	12	I^{kc}	π^{a}	$\pi^{\text {a }}$	$\pi^{\text {a }}$

291	13	I^{σ}	$\mathrm{K}^{\mathrm{x}}+\mathrm{T}$	$k^{x}+\pi$	$\mathrm{K}^{\mathrm{x}}+\mathbb{T}$
301	11	$A^{\text {b }}$	$K^{\text {X }}$	K^{x}	K^{x}
346	12	It ${ }^{\text {c }}$	13	13	13
348	1022	$\mathrm{I}^{\beta a}$	1216	1216	1216
349	1322	$\underline{T} \varphi^{\text {a }}$	$\mathrm{M}^{\text {b }}$	$\mathrm{M}^{\text {b }}$	$M^{\text {b }}$
355	12	K^{1}	$\mathrm{K}^{\mathrm{x}}+$	$K^{\text {x }}$	$\mathrm{K}^{\mathrm{X}}+$
358	14	$K^{\text {ak }}$	$K^{\text {x }}$	$K^{\text {x }}$	K^{x}
359	13	$K^{\text {x }}$	Φ	$\mathrm{K}^{\mathrm{X}}+$	$\mathrm{K}^{\mathrm{x}}+$
360	11	$\mathrm{K}^{\text {ak }}$	K^{x}	$K^{\text {x }}$	K^{X}
361	13	K^{r}	$\mathrm{K}^{\text {r }}$		$\mathrm{K}^{\text {r }}$
363	14	K^{r}	$\mathrm{K}^{\text {r }}$	K^{r}	$\mathrm{K}^{\text {r }}$
371	10	K^{X}	Φ	$\mathrm{K}^{\mathrm{X}}+\mathrm{T}$	$\mathrm{K}^{\mathrm{x}}+\pi$
372	16	$\mathrm{I}^{\text {a }}$	wild	wild	wild
373	15	$A^{\text {b }}$	$K^{\text {x }}$	K^{x}	K^{x}
374	12	$A^{\text {c }}$	$\mathrm{K}^{\mathrm{x}}+$		
375	11	K^{x}	Ω	Ω	K^{x}
376	11	$\mathrm{I}^{\text {r }}$	K^{x}	K^{x}	K^{X}
377	15	$A^{\text {c }}$	Φ	$\pi{ }^{\text {b }}$	mixed
380	1499	K^{x}	$\Pi^{\text {a }}$	$\pi^{\text {a }}$	π^{2}
382	13	K^{1}	mixed	mixed	mixed
386	14	K^{r}			$\mathrm{K}^{\text {r }}$
387	12	$\mathrm{K}^{\text {r }}$			K^{x}
388	13	K^{X}	If ${ }^{\text {b }}$		
389	11	I^{k}	$\pi^{\text {a }}$	$\pi^{\text {a }}$	$\pi^{\text {a }}$
390	1282	K^{X}	K^{X}		
391	11	$A^{\text {c }}$	$\mathbb{T}^{\text {a }}$	$\pi{ }^{\text {a }}$	K^{x}

392	12	none	Φ	$\mathrm{K}^{\mathrm{x}}+$	k^{X}
393	14	K	ma	In	
395	12	$\mathrm{I}^{\text {r }}$	Φ	$\mathrm{K}^{\mathrm{X}}+$	mixed
396	12	K^{x}	Ω		
399	9/10	K^{1}	Ω	Ω	Ω
408	12	K^{1}	Ω	Ω	Ω
419	12	K^{1}	K^{x}	$\mathrm{K}^{\mathrm{X}}+$	K+
422	11	$K^{\text {dk }}$	Φ	Φ	Φ
427	13	none	Φ	$\mathrm{K}^{\mathrm{X}}+$	$\mathrm{K}^{\mathrm{x}}+$
428	13	none	$K^{\text {x }}{ }_{\text {+ }}$	$\mathrm{K}^{\mathrm{x}}+$	$\mathrm{K}^{\mathrm{x}}+$
440	12	I'	K^{x}	$\mathrm{m}^{\text {b }}$	$K^{\mathrm{x}}+\mathrm{T}$
443	12	I^{0}	$M^{\text {b }}$	$M^{\text {b }}$	$M^{\text {b }}$
461	835	K^{1}	Ω	Ω	Ω
472	13	I^{\prime}	Φ	Φ	Φ
473	13	$I^{\text {kc }}$	K^{x}	$\pi{ }^{\text {b }}$	$\mathrm{H}^{\text {b }}$
475	- 11	K^{x}	Φ	wild	wild
47.6	11	K^{1}	Ω	Ω	Ω
477	13	$\mathrm{T}^{\text {pa }}$	1216	1216	1216
478	10	$k^{\text {ak }}$	K^{x}	K^{X}	K^{x}
480	1366	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {º }}$	$\mathrm{K}^{\text {x }}$
482	1285	I^{kc}.	K^{\times}	$\pi{ }^{\text {a }}$	Π^{2}
485	12	I'	K^{X}	K^{x}	$K^{\text {x }}$
489	1316	$I^{\text {ka }}$	$\pi{ }^{\text {a }}$	$\pi{ }^{\text {a }}$	$m^{\text {a }}$
495	12	F'	$\mathrm{K}^{\mathrm{X}}+$	Φ	$\mathrm{K}^{\text {²}}+$
504	1033	K^{x}	KX	$K^{\text {x }}$	$\mathrm{K}^{\text { }}$
517	11/12	$I^{\varphi / \mathrm{a}}$	1424		

532	11	$K^{\text {x }}$	K^{x}	K^{x}	$\mathrm{K}^{\mathrm{x}}+$
533	13	K^{X}	$\mathrm{K}^{\mathrm{X}}+$	$\mathrm{K}^{\mathrm{x}}+$	$\mathrm{K}^{\mathrm{x}}+$
534	13	A^{k}	$\mathrm{K}^{\text {r }}$	K^{x}	K^{x}
536	13	$\mathrm{K}^{\text {r }}$	mixed	II ${ }^{\text {b }}$	$\mathrm{K}^{\mathrm{x}}+\mathrm{T}$
537	12	I^{k}	Ma	$\Pi^{\text {b }}$	$\mathrm{K}^{\mathrm{x}}+$
538	12	K^{x}	Ω	S+	K
543	12	If ${ }^{\text {c }}$	13	13	13
544	13	$\mathrm{I}^{\text {a }}$	IT ${ }^{\text {a }}$	K^{X}	K^{X}
545	1430	$\mathrm{I}^{\text {r }}$	Φ	mixed	mixed
546	13	A^{k}	${ }^{\circ}$	Φ	Φ
547	11	K^{r}	K^{r}	K^{r}	$\mathbb{K}^{\text {r }}$
565	9	$\chi^{\text {a }}$	wild	$\mathrm{K}^{\mathrm{x}}+\mathrm{T}$	K \dagger
568	10	$K^{\text {ak }}$?	K^{X}	K^{x}	K^{x}
569	1161	A^{C}	$M^{\text {a }}$	$M^{\text {a }}$	$M^{\text {a }}$
570	12	$\mathrm{K}^{\text {ak }}$	K^{x}	K^{X}	K^{\times}
571	12	$K^{\text {X }}$	Ω	Ω	Ω
574	13	K^{x}	Φ	K^{x}	mixed
579	13	H	H	H	H
584	10	$\mathrm{K}^{\text {ak }}$	Ω	Ω	Ω
585	11	K^{x}	Φ	mixed	mixed
586	14	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {P }}$	K^{r}	X^{2}
652	10	K	ma	$\mathrm{K}^{\mathbf{x}}+{ }^{\text {I }}$	$\mathrm{K}^{\mathrm{x}}+\pi$
657	11/12	K^{x}	Φ	ITa	$\mathrm{K}^{\mathrm{X}}+\pi$
666	13	none	Φ	K^{X}	K^{X}
668	13/14	none	K^{X}	K^{x}	
669	10	K^{x}		K^{X}	K^{x}

672	11	K^{X}		$K^{\mathbf{x}}$	K^{x}
677	13	K^{x}	K^{X}	K^{x}	K^{X}
685	13	K^{r}	K^{r}	K^{r}	$\mathrm{K}^{\text {r }}$
692	12	I¢ \quad r	$M^{\text {a }}$	$M^{\text {a }}$	$M^{\text {a }}$
700	11	$\mathrm{I}^{\text {a }}$	mixed	wild	K^{x}
703	11	none	Ω	Ω	3
713	12	Io	mixed	mixed	mixed
71.6	14	I^{\prime}	mixed	mixed	mixed
726	13	I^{kb}	$\pi 5^{\text {b }}$	π^{b}	H^{b}
747	1164	A^{C}	Ω	\bigcirc	Ω
774	12	K^{x}	K^{x}	K	" $\overline{\mathrm{K}}$
776	11	I^{k}	$M^{\text {b }}$	M ${ }^{\text {b }}$	$M^{\text {b }}$
780	11	Iơ	mixed	K^{X}	$\mathrm{K}^{\mathrm{x}}+\pi$
785	11	K^{x}	Ω	Ω	Ω
788	11	Itb	13	13	13
796	11	I^{k}	K^{X}	K^{X}	K^{X}
824	14	K^{r}	K^{r}	K^{r}	K^{r}
825	13	$\mathrm{K}^{\text {x }}$	$\mathrm{K}^{\text { }}$	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {r }}$
826	12	$\mathrm{I}^{\text {c }}$	13	13	13
827	13	$\underline{T} \varphi^{\text {b }}$	\%	Φ	Φ
828	12	$\mathrm{I}^{\text {c }}$	13	13	13
829	12	I ${ }^{\beta}$	1216	1216	1216
830	13	K^{X}	Ma	$\mathrm{M}^{\text {a }}$	$\mathrm{K}^{\text {X }}$
831	11	K^{x}			K^{x}
839	14	K^{X}	$\pi{ }^{\text {b }}$	m^{b}	mixed
841	15	none	Φ	Φ	Φ

844	15	$\mathrm{K}^{\text {x }}$	$\$$	mixed	mixed
848	14	none	1424	$\mathrm{K}^{\mathbf{x}}$	$\mathrm{K}^{\mathrm{X}}+$
852	1300	$K^{\text {x }}$	K+	K+	k
854	1287	none	Φ	Φ	Φ
856	1280	none	Φ	¢	Φ
860	12	A^{k}	Φ	Φ	Φ
872	12	mb	K^{x}	K^{X}	K^{x}
877	1197	K^{x}	K^{X}		
880	15	I^{β}	$\mathrm{K}^{\mathrm{X}_{+}}$	K^{x}	K^{x}
834	11	$A^{\text {a }}$		$K^{\text {x }}$	1
892	9	H	H	H	H
903	1381	I¢?	mixed	mixed	mixed
904	1360	I^{k}	$\pi^{\text {a }}$	$\pi{ }^{\text {a }}$	K^{x}
927	1133	K^{1} ?	K^{x}	$K^{\text {X }}$	K^{x}
928	1305	K^{r}	K^{r}	K^{r}	K^{r}
937	11	K^{x}	Φ	$K^{\text {x }}$	K^{x}
938	1318	K^{r}	K^{r}	K^{r}	$\mathrm{K}^{\text {r }}$
942	11	k^{ak}	mixed	K^{X}	$\mathrm{K}^{\mathrm{x}}+$
94.3	11	$K^{\text {x }}$	Φ	K^{x}	K^{x}
344	11	$\mathrm{K}^{\text {ak }}$	K^{x}	$\pi^{\text {b }}$	$\Pi^{\text {b }}$
945	1.1	$\underline{T} \varphi^{\text {c }}$	$\mathrm{K}^{\mathrm{X}}+$	$\mathrm{K}^{\mathrm{x}}+$	$\mathrm{K}^{\mathrm{X}}+$
951	1317	$A^{\text {a }}$	mixed	$K^{\text {x }}$	Ma
959	1331	K^{r}	K^{r}	K^{r}	K^{r}
962	1498	K^{r}	$\mathrm{K}^{\boldsymbol{x}}$	K^{r}	K^{r}
989	12	A^{C}	$\pi^{\text {a }}$	$\pi^{\text {a }}$	K^{X}
991	11	K^{X}	$\mathrm{K}^{\mathrm{x}}+$	K^{X}	K^{X}

992	13	I^{k}	$\pi^{\text {a }}$	$\pi{ }^{\text {a }}$	π^{a}
998	12	I'	K^{x}	$K^{\text {x }}$	K^{x}
999	13	$K^{\text {x }}$	Φ	K^{x}	$\mathrm{K}^{\mathrm{x}}+\mathrm{T}$
1004	1291	I^{k}	$\mathrm{Ma}^{\text {a }}$	K^{X}	K^{x}
1005	14	I	22	22	22
1006	11	K^{1}	Ω	K+	K
1007	12	I^{k}	mixed	$\pi^{\text {b }}$	$\pi{ }^{\text {b }}$
1008	13	I^{k}	K^{X}	K^{x}	K^{X}
1009	13	I^{k}	mixed	mixed	mixed
1010	12	If ${ }^{\text {c }}$	Ω	Ω	Ω
1011	1263	A^{k}	$\mathrm{K}^{\mathrm{x}}+$	K^{X}	II ${ }^{\text {a }}$
1012	11	I ${ }^{\text {d }}$	mixed	wild	wild
1013	11/12	K^{X}	$K^{x}+\pi$	$\mathrm{K}^{\mathrm{x}}+\mathbb{T}$	$\mathrm{K}^{\mathrm{x}}+\pi$
1014	11	I^{k}	$M^{\text {a }}$	$M^{\text {a }}$	$M^{\text {a }}$
1021	13	none	Φ	$\mathrm{K}^{\mathrm{x}}+\mathrm{If}$	$\mathrm{K}^{\mathrm{x}}+\mathrm{IT}$
1023	1338	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {r }}$	K^{r}	$\mathrm{K}^{\text {r }}$
1030	1518	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {r }}$	K^{r}	$\mathrm{K}^{\text {r }}$
1071	12	I^{0}	wild	wi̇ià	wi.ld
1073	10/11	K^{x}	Ω	Ω	Ω
1074	11.	K^{x}	Φ	$\mathrm{M}^{\text {b }}$	Φ
1076	10	K^{x}	Ω	$K^{\text {X }}$	K^{x}
1077	10	K^{1}	Ω	Ω	Ω
1078	10	$A^{\text {b }}$	$K^{\text {x }}$	K^{x}	K^{x}
1079	10	I^{k}	$\pi^{\text {a }}$	$\pi{ }^{\text {a }}$	$\Pi^{\text {a }}$
1080	9	$A^{\text {b }}$	$K^{\text {x }}$	$K^{\text {x }}$	K^{x}
1110	11	$\mathrm{K}^{\text {X }}$	$K^{\text {x }}$	$K^{\text {x }}$	K^{X}

1113	13	I^{k}	II ${ }^{\text {b }}$	$\pi{ }^{\text {b }}$	$\pi{ }^{\text {b }}$
1152	1133	K^{X}	K^{x}	${ }^{\text {P }}$	K^{X}
1163	1038	A^{k}	Ω	$\Omega+$	Ω
1166	10	I^{k}	$I^{\text {a }}$	K^{X}	$K^{\text {x }}+\pi$
1167	11	A^{k}	K^{x}	$\mathrm{K}^{\mathbf{x}}$	$\mathrm{K}^{\mathrm{x}}+$
1168	11	K^{x}	K^{x}	$K^{\text {X }}$	$\mathrm{K}^{\mathbf{x}}$
1169	12	K^{x}	$\mathrm{K}^{\mathrm{x}}+$	K^{r}	$K^{\text {x }}$
1172	10	K^{1}	Ω	K^{X}	K^{x}
1173	13	K^{x}	$\mathrm{K}^{\mathrm{x}}+$	K^{X}	K^{x}
1177	13	none			$\mathrm{K}^{\mathbf{X}}$
1178	13	none	K^{x}		
1179	1282	K^{ak}	K^{x}		
1181	1368	T甲b	Φ	K^{x}	$K^{\text {x }}$
1185	14	none	K^{x}	K^{r}	K^{r}
1186	12	$K^{\text {x }}$	K^{x}	K^{x}	K^{x}
1187	11	$\mathrm{I}^{\text {r }}$	Λ	Λ	Λ
1188	11/12	$I^{\text {¢ }}$	Φ	K^{x}	K^{x}
1189	1346	K^{r}	K^{r}	$\mathrm{K}^{\text {r }}$	K^{r}
1190	12	K^{X}	K^{r}	K^{r}	
11.91	11/12	K^{1}	K^{x}	K^{x}	K^{x}
1192	11	$I \mathrm{n}^{\text {b }}$	22	22	22
1193	12	K^{X}	Φ	Φ	Φ
1194	11	$I^{\varphi}{ }^{\text {r }}$	$M^{\text {a }}$	$M^{\text {a }}$	$M^{\text {a }}$
1195	1123	K^{X}	$M^{\text {b }}$	$M^{\text {b }}$	$M^{\text {b }}$
1197	12	K^{x}	$\mathrm{K}^{\mathrm{x}}+$	$\mathrm{K}^{\mathrm{x}}+$	$\mathrm{K}^{\mathrm{x}}+$
1200	12	$I^{k b}$	$\pi^{\text {b }}$	$\pi^{\text {b }}$	$\mathrm{II}^{\text {b }}$
1201	1250	K^{X}	K^{x}	$K^{\text {x }}$	$K^{\text {x }}$

1202	15	$I^{\varphi r}$	$M^{\text {a }}$	$M^{\text {a }}$	$M^{\text {a }}$
1203	10	K ${ }^{\text {x }}$	K^{x}	K^{x}	K^{X}
1204	12	K ${ }^{\text {x }}$	$M^{\text {b }}$	K	K
1205	13	Ir	Λ	Λ	Λ
1206	1247	K^{x}	Ω	Ω	Ω
1207	11	$I^{\varphi} \mathcal{C}$	K^{x}	$\pi{ }^{\text {b }}$	$\pi{ }^{\text {b }}$
1208	13	K^{x}	$M^{\text {b }}$	$\mathrm{M}^{\text {b }}$	m^{b}
1209	1067	I^{k}	$K^{\text {x }}$	K^{x}	$M^{\text {a }}$
1210	11	$I 7^{\text {b }}$	22	22	22
1211	11	A^{k}	$K^{\text {x }}$	K^{x}	$M^{\text {a }}$
1212	11	K^{ak}	$K^{\text {x }}$	K^{x}	K^{x}
1213	1268	kak	$\Omega+$	K+	K^{x}
1214	11	$K^{\text {ak }}$	K^{X}	K^{x}	K^{X}
1215	13	$\mathrm{K}^{\text {ak }}$	mixed	K	K
1216	11	$\mathrm{I}^{\beta b}$	1216	1216	1216
1217	1186	K^{x}	Φ	K^{x}	K^{X}
1218	12	$K^{\text {x }}$	Ω	K^{x}	K^{x}
1219	11	$I^{\text {ka }}$	$\Pi^{\text {a }}$	$\pi^{\text {a }}$	π^{a}
1220	10	none	$M^{\text {a }}$	$\mathrm{Ma}^{\text {a }}$	$M^{\text {a }}$
1221	11	K^{x}	Φ	$K^{\text {x }}$	K^{x}
1222	11	$I^{4 r}$	$M^{\text {a }}$	$\mathrm{m}^{\text {a }}$	$\mathrm{Ma}^{\text {a }}$
1223	10	$I^{\varphi c}$	$\pi^{\text {b }}$	$\pi{ }^{\text {b }}$	$\mathrm{H}^{\text {b }}$
1224	12	K^{r}	$\mathrm{K}^{\text {r }}$	K^{r}	K^{r}
1225	10	$K^{\text {ak }}$	K^{x}	K^{x}	K^{x}
1226	13	K^{x}	K^{X}	K^{x}	K^{x}
1227	13	$A^{\text {k }}$	Φ	$K^{\text {x }}$	K^{x}

1228	12	K^{X}		mixed	$M^{\text {a }}$
3.229	13	I^{\prime}	${ }^{\mathrm{N}}+$	$\mathrm{K}^{\mathrm{x}}+$	mixed
12su	1124	none	1424?	1424?	1424?
1232	15	K^{X}	Φ	$K^{\text {x }}$	K^{x}
1233	15	I^{k}	$\mathbb{T}^{\text {b }}$	$\pi^{\text {b }}$	K+ II
1234	14	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {r }}$	K^{x}	K^{r}
1235	14	$\mathrm{K}^{\text {² }}$	$\mathrm{K}^{\mathrm{x}}+\mathrm{II}$	$\mathrm{K}^{\mathrm{x}}+\mathrm{II}$	$K^{\mathrm{X}}+\mathrm{T}$
1236	14	K^{r}	$\mathrm{K}^{\text {r }}$	K^{r}	K^{r}
1237	15	$I^{\varphi{ }_{\text {I }}}$	Ma	$M^{\text {a }}$	$M^{\text {a }}$
1238	1244	$\mathrm{K}^{\text {x }}$	K^{x}	K^{x}	K^{x}
1239	16	none	KTr	K^{τ}	$\mathrm{K}^{\text {r }}$
1240	12	K^{\times}	K^{X}	K^{x}	K^{x}
1241	12	H	H	H	H
1242	13	$I^{\prime \prime}$	Ma	$\mathrm{K}^{\mathbf{x}+}$	$M^{\text {a }}$
1243	11	I^{β}	1216	1216	1216
1247	15	K^{x}	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {r }}$	K^{r}
1248	14	K^{X}	Φ	mixed	$\mathrm{KX}^{\text {X }}$
1250	15	Kr	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {r }}$
1251	13	K^{r}	Kr	$\mathrm{K}^{\text {r }}$	K^{r}
1252	1306	none	$\mathrm{K}^{\mathrm{x}}+$	$\mathrm{K}^{\mathrm{x}}+$	$\mathrm{K}^{\mathrm{x}}+$
1253	15	none	mixed	mixed	mixed
1255	13	none	Φ	K^{x}	K^{X}
1273	1128	none	$\mathrm{K}^{\mathrm{x}}+$	$\pi{ }^{\text {b }}$	mixed
1278	12	I ${ }^{7}$	22	22	22
1279	11	$I^{\beta a}$	1216	1216	1216
1285	13	K^{X}	$\mathrm{K}^{\mathrm{x}}+$	K	K

1386	12	$I^{\varphi} \mathrm{r}$	Ma	$M^{\text {a }}$	$M^{\text {a }}$
1392	10	A^{C}	K^{X}	$K^{\text {x }}$	$\pi^{\text {a }}$
1393	12	K^{x}	$K^{\text {x }}$	$\mathrm{K}^{\text {x }}$	$\mathrm{K}^{\mathrm{x}}+$
1394	1301	Hag.	$K^{\text {x }}$	$K^{\text {x }}$	K+
1395	1366	K^{x}	mixed	K^{x}	K^{X}
1403	1300?	none	$K^{\text {x }}$	$m^{\text {b }}$	$K^{\text {x }}$
1404	13	K^{X}	K^{x}	K^{x}	K^{X}
1415	1145	K^{X}	$M^{\text {a }}$	$M^{\text {a }}$	$M^{\text {a }}$
1417	10	K^{X}	Ω	K^{X}	
1424	9/10	$I \psi^{\text {a }}$	1424	1424	1424
1438	11	$K^{\mathbf{x}}$	$\mathrm{K}^{\mathrm{x}}+$	K	Φ
1439	11	A^{k}	K^{X}	$\mathrm{K}^{\mathrm{x}}+\mathrm{II}$	$K^{\text {X }}$
1443	1047	I $\varphi \mathrm{r}$	mixed	mixed	mixed
144.4	11	K^{ak}	K^{x}	K^{X}	K^{X}
1445	1323	K^{r}	K^{r}	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\mathbf{r}}$
1447	1337	I^{k}	Ω	$\pi{ }^{\text {a }}$	$\mathrm{K}^{\mathrm{x}}+\mathrm{II}$
1448	11	K^{x} ?	K^{x}	$\mathrm{K}^{\mathrm{X}}+$	K^{x}
1449	11	$\mathrm{K}^{\text {ak }}$	K^{x}	$K^{\mathbf{x}}$	K^{x}
1452	992?	K^{X}	k^{x}	$K^{\mathbf{X}}$	K^{x}
1455	11/12	I^{k}	$M^{\text {b }}$	$M^{\text {b }}$	$M^{\text {b }}$
1458	10	K^{x}	$M^{\text {a }}$	$M^{\text {a }}$	$M^{\text {a }}$
1466	1270	K^{X}	$M^{\text {b }}$	$M^{\text {b }}$	$M^{\text {b }}$
1470	11	K^{1}	Ω	Ω	Ω
1476	1333	K^{x}	K^{r}	K^{r}	K^{r}
1478	11/12	I^{k}	$\pi^{\text {b }}$	$\mathrm{I}^{\text {b }}$	$\Pi^{\text {b }}$
1483	11	K^{x}	$\mathrm{K}^{\mathrm{x}}+$	K	$K^{\text {x }}$

1564	1300	K^{x}	K^{X}	K^{x}	K^{X}
1566	11/12	A^{k}	$\mathrm{K}^{\mathrm{x}}+$	K	$\mathrm{K}^{\mathrm{x}}+$
1569	1307	$K^{\text {x }}$	$M^{\text {a }}$	mixed	mixed
1570	11	none	K^{x}	K	$\mathrm{K}^{\mathrm{X}}+$
1572	1304	K^{r}	K^{r}	K^{r}	K^{r}
1573	12/13	I^{r}	Λ	Λ	Λ
1577	1303	K^{x}	Φ	$\mathrm{K}^{\mathrm{x}}+$	K^{x}
1579	11	$I^{\beta b}$	1216	1216	1216
1582	949	$I^{\text {na }}$	22	22	22
1583	12	$\mathrm{K}^{\text {ak }}$	$K^{\text {x }}$	K^{x}	$K^{\text {x }}$
1592	1445	K^{X}	$K^{\text {x }}$	Φ	K^{x}
1594	1284	Hag.	K^{x}	K^{x}	$K^{\text {x }}$
1597	1289	K^{x}	$K^{\text {x }}$	mixed	$\mathrm{K}^{\mathbf{x}}$
1604	13	I ${ }^{\prime}$	Φ	Φ	mixed
1605	1342	I^{k}	$\mathrm{K}^{\mathrm{x}}+\mathrm{II}$	$\pi{ }^{\text {b }}$	$K^{x}+\pi$
1607	11	none	K^{x}	K^{x}	K^{X}
1614	1324	K^{r}	K^{r}	$K^{\text {r }}$	K^{r}
1628	1400	K^{r}	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {r }}$	K^{r}
1630	1314	K^{r}	$M^{\text {b }}$	$M^{\text {b }}$	M ${ }^{\text {b }}$
1637	1328	K^{r}	$K^{\text {r }}$	K^{r}	K^{r}
1642	1278	$K^{\text {x }}$	Φ	K	mixed
1645	1303	K^{X}	Φ	$\mathrm{K}^{\mathbf{x}}$	K^{x}
1646	1172	K^{1} ?	Φ	Φ	Φ
1647	1274	K^{X}	$M^{\text {a }}$	Φ	¢?
1654	1326	$\mathrm{I}^{\text {a }}$	7	7	7
1685	1292	$I^{\beta b}$	7	7	7

2354	1287	none	Φ	K^{X}	$\mathrm{K}+\mathrm{I}$
2355	14	none	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {x }}$	K^{r}
2356	14	none	$K^{\text {x }}$	$\pi{ }^{\text {b }}$	$\mathrm{K}^{\mathrm{x}}+\mathrm{II}$
2358	12	none	Ω	Ω	Ω
2364	12/13	none	K^{r}	K^{x}	K^{x}
2368	12	none		K	
2369	10	none	Φ	K^{X}	K^{X}
2370	12	none	$\mathrm{K}^{\text {r }}$	K+ II	K
2372	13	none	22	22	22
2373	10	none	Ω	$\mathrm{K}^{\mathrm{x}}+$	wild
2374	1.3	none	Φ	K^{x}	K^{X}
2375	14	none	mixed	$\mathrm{K}^{\mathrm{x}}+$	K+
2376	13	none		K^{x}	
2382	12	none	$\mathrm{K}^{\text {r }}$	K^{r}	$\mathrm{K}^{\text {r }}$
2383	13/14	none	K^{x}	K^{X}	K^{x}
2386	12	none	Ω	Ω	K^{x}
2394	13	none	$\mathrm{m}^{\text {b }}$	$M^{\text {b }}$	$\mathrm{M}^{\text {b }}$
2396	13	none		K	K
2397	1303	none.	mixed	mixed	K^{X}
2398	14	none	$\Pi^{\text {a }}$		K^{x}
2399	14	none	$\mathrm{K}^{\text {r }}$	K^{r}	$\mathrm{K}^{\text {r }}$
2400	13	none	$\pi{ }^{\text {a }}$	$\Pi^{\text {a }}$	$\Pi^{\text {a }}$
2404	13	none	$\pi^{\text {a }}$	$\pi{ }^{\text {a }}$	$\pi^{\text {a }}$
2405	13	none	$\pi{ }^{\text {a }}$	$\pi^{\text {a }}$	$\Pi^{\text {a }}$
2406	14	none	$\mathrm{K}^{\mathrm{x}}+$	$\mathrm{K}^{\text {x }}$	K^{X}
2407	1332	none	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {r }}$

2410 ($=2266$)) 12	none	K^{X}	$\mathrm{K}^{\mathbf{x}}$	K^{X}
2411	13	none	II ${ }^{\text {a }}$	$\Pi^{\text {a }}$	$\pi{ }^{\text {a }}$
2437	12	none	$\mathrm{K}^{\mathrm{x}}+$	$\mathrm{K}^{\mathbf{x}}+$	mixed
2475	11	none	K^{x}	K	$K^{\text {x }}$
2492	13	none	Φ	K+	K+ Π
2494	1316	none	mixed	$K+\pi$	$\mathrm{K}+\mathrm{II}$
2496	1555	none	$\mathrm{K}^{\text {r }}$	K^{r}	Kr
2499	13/14	none	K^{x}	K^{x}	K^{X}
2503	14	none	$\mathrm{K}^{\text {r }}$	$\mathrm{K}^{\text {r }}$	K^{r}
2520	14	none	K^{r}		
2521	17	none	Φ		
2522	13/14	none	mixed	mixed	mixed
2533	1271	none	Φ	mixed	mixed
2561	11	none	Φ	mixed	
2585	11	none	mixed	K	1216
2608	13	none	Φ	K^{x}	K^{x}
2609	11	none	K^{x}	K^{x}	wild
2612	13	none	K^{x}	K^{x}	K^{x}
2613	11	none	$M^{\text {b }}$	M^{b}	$\mathrm{M}^{\text {b }}$
2614	13	none	K^{x}	$\mathrm{I}^{\text {b }}$	$\mathrm{K}^{\mathrm{x}}+\mathrm{II}$
2615	12	none	mixed	mixed	$\Pi^{\text {a }}$
2616	12	none	Φ	K^{x}	K^{x}
2633	14	none	Φ		
2634	15	none	$\mathrm{K}^{\mathrm{x}}+$		
-. 2635	16	none	$K^{\text {r }}$		

Spranger Gospel
Duke 31
Duke 38
none mixed mixed $K^{X_{+}}$ mixed Φ mixed π^{b} mixed K^{x}
Φ means that the Chapter in question reads sometimes with one of the former I^{φ} groups of von Soden ($M^{a b}, 7$ and 1424) but never enough to be put into one of these groups.
mixed means that one or more groups are mixed in the Chapter.
K means that the Chapter has a mixture of $\mathrm{K}^{\mathrm{X}}, \mathrm{K}^{\mathrm{r}}$ or Ω readings but the manuscript cannot be definitely put into one of these groups. There are also some manuscripts which have only a few readings which are K^{x} but not enough to classify the manuscript in terms of the K^{X} group. + means that the chapter reads a group listed before the plus sign with some miscellaneous extra. wild means that the text does not conform to any known group but is substantially divergent from the Textus Receptus. $K^{t r}$ means that the text is the same as the Textus Receptus with only one or two exceptions.

A blank space means that the Chapter was not profiled.

[^0]: 2H. C. Hoskier, "Von Soden's Text of the New Testament," Journal of Theological Studies, XV, No. 4 (1914), pp. 307-326. This article is the most hard-hitting review of von Soden's work. The lack of accuracy in citation has become well-known. In the I.G.N.T.P. it was decided that we should not cite von Soden's apparatus because where we could test his accuracy with our twice checked collations, he was found to be in error quite regularly. The lack of validity is shown in the defectiveness of some of his groups, which are discussed below.
 ${ }^{3}$ The analysis of these groups is the subject of the second part of this dissertation.
 ${ }^{4}$ The discovery of a new uncial manuscript or papyrus arouses great interest to scholars because of its probable early date. An uncial manuscript can also be evaluated in terms of other uncials because there are only 30 complete uncials of Luke. Some of these uncial manuscripts fit into our groups. An uncial manuscript by reason of its script, age and rarity commands greater attention. On the contrary, the discovery of a new minuscule manuscript only adds to the mass still unclassified.

[^1]: ${ }^{9}$ If we had used Tischendorf, we would have missed 6 test readings in Chapter 1. If we had used von Soden, we would have missed only one. If one used Tischendorf for suggestions of test readings, it would still necessitate almost complete collations of the manuscripts involved in each group. This is true because Tischendorf does not always cite a manuscript throughout his apparatus and because the apparatus contains a large number of variants which for this method are not relevant. Von Soden would be better at this point, but his apparatus lacks accuracy and consistency in citation.

[^2]: $\mathrm{I}_{\text {My }}$ colleague in this work, Mr. Frederik Wisse, has a detailed analysis of former methods of classirication in his dissertation, The Claremont Frofile Method for the Classification of Byzantine New Testament Manuscripts: A Study in Method.

 2David Ole Voss, "Is von Soden's Kr a Distinct Type of Text?" Journal of Biblical Literature, LVII (1938), p. 314.

[^3]: ${ }^{3}$ The total of 550 manuscripts includes the 463 MSS previously noted plus 87 additional manuscripts. Since the selection of the test readings, these manuscripts were added from profiles collected at the Vatican Film Library at St. Louis and several other sources. The number of manuscripts increases whenever we have an opportunity to profile a manuscript or collation.
 ${ }^{4}$ The cumulative distinguishing points of all three chapters makes these two groups distinguishable. Generally a group is easily distinguishable in one chapter.

[^4]: 4The term "group" is a more neutral term than "family." "Family" indicates the closest of relationships and Family 13 and Family 1424 are certainly related but not that closely. E.C. Colwell defines a family as "the smallest identifiable group . . . that group of sources whose genealogy can be clearly established so that its text may be reconstructed solely with reference to the external evidence of documents." E. C. Colwell, "The Significance of Groupings of New Testament Manuscripts," New Testament Studies, Vol. 4, no. 2, (1958), p. 81.

[^5]: ${ }^{23}$ It would be well to avoid the first chapter of a book in any later development or continuation of this method.

[^6]: $2_{\text {The }}$ prior classifications referred to here and elsewhere in this paper are obtained from Voñ Soden's volumes and from Kurt Aland's Kurzgefasste Liste der Griechischen Handschriften des Neuen Testaments Band I (Berlin: Walter de Gruyter \& Co., 1963).

[^7]: 62 See Appendix 4. This is a list of all manuscripts profiled and their classification. Look especially at manuscripts 79, 1439 and 1447.

[^8]: ${ }^{63}$ This group has been designated Group Ω because Codex Ω is its most prominent member. Von Soden refers to this group as K^{1}.
 6^{64} Von Soden, op. cit., Vol. I, pp. 718-19.
 ${ }^{65}$ The exact relationship is still a matter for debate despite Silva Lake's conclusions in "Family Pi and Codex Alexandrinus."

[^9]: 4Von Soden, ¢p. cit., Vo1. I, P. 1110. (1223, 1293, 23, 160, 990, 1010, 1085, 2093, 945, 295, 1441, 1129 and 582.)
 ${ }^{5}$ See above in Chapter II for a description of this inconsistency.

